Clinical assessment of spatial uncertainty for a combined 0.35T MR and EBRT treatment machine

J Neylon, K Sandler, D Du, Y Yang, J Lamb, K Sheng, DA Low, and M Cao
Department of Radiation Oncology
University of California Los Angeles

INTRODUCTION

With the advent of magnetic resonance imaging guided external beam radiotherapy, there has been increasing interest in MR-only treatment planning. Spatial integrity in planning images is an important consideration for radiotherapy. Systematic distortion can be effectively minimized, however, patient-induced susceptibility and chemical shift distortions are difficult to address. This study attempts to estimate overall spatial uncertainty on clinical patient data for 0.35T MR images.

This work attempts to quantify total spatial distortion in clinical patient imaging for a 0.35T combined MRI-teletherapy machine, whereas previous work has focused on simulating or measuring magnetic field inhomogeneity for higher strength diagnostic level MRI machines.

METHOD

- Ten head-and-neck cancer patients with both CT and MR simulations were selected.
- Simulation images were rigidly registered, and aligned images were generated with matching size and resolution.
- Landmark-based analysis was performed with in-house software.
- Spatial distortion was quantified as the Euclidean distance between landmarks.
- Landmarks were also tagged by tissue interface.
- As baseline, a distortion phantom containing simulated bone and low density regions was also imaged and analyzed.

RESULTS

Average error was 1.15+-1.14mm for the distortion phantom, and 1.46+-1.78mm for the patient data. For landmarks with non-zero errors, the histogram peaked at 1.5mm error, which corresponded with the in-plane resolution of the CT image (1.2-1.5mm). Larger errors were observed at bone-tissue interfaces with an average of 2.01+-2.20mm, compared to 1.41+-1.56mm and 0.88+-1.24mm for the soft tissue and air-tissue, respectively. Geometric error also generally correlated to the in-plane radial distance from the image center.

CONCLUSIONS

Results indicate that spatial uncertainty remains in the MR images after systematic distortion corrections are applied. Even though the observed errors were small and should have little to no clinical significance, the uncertainty emphasizes the need for continued development of quantitative methods for assessing patient-specific spatial distortions as an important consideration in moving towards MR-only treatment planning.