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Purpose: Elastography using computer tomography (CT) is a promising methodology that can pro-
vide patient-specific regional distributions of lung biomechanical properties. The purpose of this
paper is to investigate the feasibility of performing elastography using simulated lower dose CT
scans.
Methods: A cohort of eight patient CT image pairs were acquired with a tube current–time product
of 40 mAs for estimating baseline lung elastography results. Synthetic low mAs CT scans were gen-
erated from the baseline scans to simulate the additional noise that would be present in acquisitions
at 30, 25, and 20 mAs, respectively. For the simulated low mAs scans, exhalation and inhalation
datasets were registered using an in-house optical flow deformable image registration algorithm. The
registered deformation vector fields (DVFs) were taken to be ground truth for the elastography pro-
cess. A model-based elasticity estimation was performed for each of the reduced mAs datasets, in
which the goal was to optimize the elasticity distribution that best represented their respective DVFs.
The estimated elasticity and the DVF distributions of the reduced mAs scans were then compared
with the baseline elasticity results for quantitative accuracy purposes.
Results: The DVFs for the low mAs and baseline scans differed from each other by an average of
1.41 mm, which can be attributed to the noise added by the simulated reduction in mAs. However,
the elastography results using the DVFs from the reduced mAs scans were similar from the baseline
results, with an average elasticity difference of 0.65, 0.71, and 0.76 kPa, respectively. This illustrates
that elastography can provide equivalent results using low-dose CT scans.
Conclusions: Elastography can be performed equivalently using CT image pairs acquired with as
low as 20 mAs. This expands the potential applications of CT-based elastography. © 2020 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.14112]
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1. INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a major
cause of disability and the third leading cause of death in
the United States.1 COPD refers to a large group of incur-
able lung diseases characterized by the persistent reduction
of lung function. Changes in lung function are associated
with changes in lung tissue biomechanical properties; for
example, diseases of the lung that alter lung function often
do so by altering the amounts of elastin and collagen of
parenchymal tissue, leading to changes in tissue elasticity.2

Excised tissue studies have shown that localized changes
in the biomechanical properties of lung parenchyma pre-
cede the initiation and progression of certain lung dis-
eases, including cancer.3,4 While computed tomography
(CT) is commonly used for lung imaging, it does not pre-
sent an explicitly quantitative characterization of the lung
biomechanical properties.5

Elastography has the potential to inform diffuse lung dis-
ease phenotype characterization and staging and treatment
response monitoring. Elastography is a noninvasive method
of mapping the distribution of a critical lung biomechanical
property, elasticity, or tissue stiffness, generally performed
with ultrasound techniques.6 The elasticity of tissue can be
used to differentiate regions of diseased tissue (such as
COPD or cancer) from functional tissue. In our preliminary
work, we demonstrated a novel elastography approach more
applicable to radiation therapy using simulated virtual lung
phantoms.7 This methodology was quantified and validated
for lung cancer radiation therapy CT scans reconstructed
using a published breathing motion model.8

Our elastography estimation method used multiple fast
helical CT scans, each delivering 1.2 mSv to the lungs. The
original protocol utilized 25, 40 mAs scans, but Thomas et al
and O’Connell, et al determined that minima of 10 and 6
scans would be required for ungated and prospectively gated
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protocols, corresponding to a total effective dose of 12 and
7.2 mSv, respectively.9,10 Mettler, et al showed that the pub-
lished dose range for routine diagnostic CT scans ranges from
4.0 to 18.9 mSv, with an average of 7 mSv.11 Currently,
SPIROMICS studies have employed an effective imaging
dose as low as 4.9 mSv in their protocols for acquiring image
pairs.12 Low-dose CT studies using iterative reconstruction
have reported effective doses below 1 mSv. Our current tech-
nique delivers exposures similar to routine diagnostic CT
studies. Diagnostic CT studies are used for human image
interpretation while the scans acquired for elastography esti-
mation are used to quantitatively determine the motion and
distortion characteristics of lung tissues during breathing.
While the estimation method is agnostic to the underlying CT
dose, variations in the CT dose is considered as the primary
reason for a lowered accuracy in the estimated elasticity.
Therefore, the aim of this paper is to assess the effect of
image noise on elastography quality using simulated reduced
dose CT scans.

2. MATERIALS AND METHODS

This study used a cohort of CT datasets of eight radiother-
apy patients that were acquired under IRB # 11-000620-CR-
00004 at UCLA.13 The patients underwent a series of 25 fast
low-dose helical CT scans. The scans were co-registered
using DEEDs. The resulting deformation vector fields
(DVFs), along with the breathing amplitude and rate, were
used to develop patient-specific breathing motion models
[termed five-dimensional CT (5DCT) models].13 Exhalation
and inhalation, defined as the 5th and 85th percentile tidal
volume, were reconstructed using the 5DCT model. Unlike
the published 5DCT approach, where multiple deformed
scans are averaged to reduce noise, only a single CT scan was
deformed to represent these tidal volumes to maintain the
noise characteristics of the original fast helical (1.2 mSv)
scans, termed the baseline scans. The CT parameters are
listed in Table I.

2.A. Low-dose CT simulation

Noise was injected in the image domain of the baseline
scans to simulate the effects of lower dose scanning. As

lowering the tube current is the most direct way of achieving
radiation dose reduction, different tube currents were simu-
lated as a way of replicating the additional noise of lower
dose scans.14 The noise injection process used forward pro-
jection to estimate raw data,15 calculated appropriate photon
statistics, and finally back projected added and filtered noise.

2.A.1. Noise injection process

Noise was injected on each slice independently, neglecting
the cone angle of the system and assuming it was similar to a
fan-beam geometry. Each slice was forward projected to esti-
mate the attenuation of each ray, and we included the effect
of a bowtie filter following the attenuation profile described
in Ref. [21] which was for a different system. We assumed
that the scanner used a rebin-to-parallel reconstruction
scheme to preserve noise uniformity and hence sampled rays
in a parallel beam fashion.

The number of photons incident on the detector was cal-
culated by estimating that 1.8 9 106 photons/mm2-mAs
arrived at the detector in the absence of attenuation for a
typical spectrum at 120 kVp.22 The number of photons was
then multiplied by an efficiency factor E that incorporated
effects such as geometric efficiency, and noise from scatter
or Swank factor was added. E was selected by comparison
to experimental measurements, explained below. This
noise-addition sinogram was then filtered by a smoothing
function s xð Þ to match the noise power spectrum (NPS).
The noise-addition sinogram was then reconstructed and
added to the original image to synthesize the reduced dose
CT scan. The scans were acquired without tube current
modulation. In order to provide a conservative estimate of
possible dose reduction, we assumed that the original scans
were noiseless.

The efficiency factor E and smoothing function s xð Þ were
tuned to reconstructions of a water cylinder scanned using the
same protocol as the clinical series. The water phantom was a
component of the ACR phantom, scanned with a Siemens
Definition AS. The scan was performed at 120 kVp and
500 mA with a rotation time of 0.5 s, a collimation of
19.2 mm at isocenter, and a pitch value of 1. The reconstruc-
tion was performed using a B30 kernel and 1 mm slice thick-
ness. The water cylinder image was binarized (thresholded to
either �1000 or 0 HU) to create a simulated noiseless water
cylinder, and noise was injected into the binarized water
cylinder to simulate the noise in the experimental measure-
ments. The one-dimensional (1D) NPS was calculated for
comparison. The calculation of the NPS has been described
in greater detail elsewhere23,24 but briefly, seven adjacent
slices were averaged to alleviate through-plane correlations, a
series of square region of interests (ROIs) with side length
31 mm and each positioned 30 mm from the center of the
water cylinder were defined, and their Fourier transforms
were taken after mean subtraction to create the NPS. These
NPS measurements were averaged and binned in the radial
direction to produce 1D NPS. To match the simulated NPS
with experimental NPS, we selected an efficiency factor of

TABLE I. Relevant computed tomography (CT) scan parameters.

Single collimation width 0.6 mm

Total collimation width 19.2 mm

Spiral Pitch Factor 1.5

Table Speed 87.2 mm/s

CTDIvol 3.04 mGy

kVp 120

Effective mAs 40

Tube rotation time 330 ms

X-ray tube current 182 mA
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E = 59% and a Gaussian smoothing filter with standard devi-
ation of 0.43 channels.

Figure 1 shows the experimental against simulated noise
in a water cylinder, and Fig. 2 shows the estimated noise
power spectra. Agreement of the noise power spectra is mod-
erate at low frequencies, presumably due to low frequency
artifacts which may arise from imperfect correction of scatter
or beam hardening. The spatial distributions of the noise as
seen in Fig. 1 differed slightly from each other, possibly
because we employed a generic bowtie filter profile.

For each patient dataset, noise was injected to represent
CT scans acquired with reduced tube current–time products
of 30, 25, and 20 mAs. The lower limit of 20 mAs was
selected to match the lower end of lung cancer screening and
emphysema detection programs.14

2.B. Image registration

The model-guided elasticity approach presented in this
study relies on DVFs extracted from deformable image regis-
tration (DIR) of exhalation and inhalation breathing phases.
The lungs were segmented using an intensity thresholding
approach, and the two breathing phases were deformably reg-
istered using a well-validated in-house multilevel optical flow
DIR algorithm.16 The DVFs of the baseline images were
taken to be the ground truth displacement for the elasticity
estimation process.

2.C. Elasticity estimation

The elasticity estimation process has been systematically
studied and validated for the lungs in Ref. [7,8]; for clarity,
the process will be summarized briefly here. The inverse
elasticity problem was formulated as a parameter-optimiza-
tion problem with an objective to determine the elasticity
parameter that would minimize the difference between
ground truth (registration) DVFs and those computed by a
constitutive biomechanical model.17 Solving the inverse elas-
ticity problem was conducted in two steps: (a) estimating the
DVF for every voxel of lung tissue for a given elasticity dis-
tribution and boundary constraint using a biomechanical

model; and (b) optimizing the elasticity distribution to best
reproduce the registration ground truth DVF.

The elasticity results derived for the baseline CT scans will
be considered ground truth and used for comparison to the
lower mAs results.

2.D. Quantitative analysis

As a first measure of quantitative analysis, the displace-
ment results from each of the lower mAs model-guided elas-
ticity estimations were evaluated and compared with those
obtained with the baseline CT scans. The comparison was
first performed using average and maximum values. Absolute
error between the distributions was then calculated by sub-
tracting the lower mAs DVFs from the baseline DVFs. We
then computed the number of voxels whose estimated DVF
errors were <0.5 or 1 mm. Equivalent analyses were con-
ducted for the elasticity estimates, with an error threshold of
0.5 or 3 kPa.

For further investigation of the elasticity distribution, the
underlying elasticity values were split into low elasticity, rep-
resenting voxels with elasticity values between 1 and 3 kPa,
mid elasticity, representing voxels with elasticity values
between 3 and 6 kPa, and high elasticity, representing voxels
with elasticity values >6 kPa, subgroups. The error within
each of the elasticity ranges is relevant since parenchymal tis-
sue, specifically diseased parenchymal tissue, is known to
have low elasticity values.

In addition to the previous evaluation, the normalized
cross-correlation (NCC) image similarity metric was used to
further assess the results of our study. NCC is a similarity
measure that is invariant to brightness and contrast variations
that has been previously used to compare similarity of medi-
cal lung image.18 NCC is relatively insensitive to intensity
changes caused by tissue compression difference between dif-
ferent breathing phases.19 NCC values range from a perfect
match of 1 to a completely anti-correlated match of �1, and
were calculated for every 2D slice. These values were then
averaged over the whole 3D image volume for comparison.

FIG. 1. (Left) Experimental reconstruction of water cylinder.25 (Right) Simu-
lated injection of noise. Average of 7 slices. WW = 100 HU.

FIG. 2. Comparison of noisy power spectra from simulated and experimental
data.
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3. RESULTS

3.A. Low-dose CT simulation

Figure 3 shows an example of a baseline exhalation lung
scan (a), a simulated 30 mAs lung scan (b), and a simulated
20 mAs lung scan. The reduced dose images are noisier than
the baseline image, as expected, especially in the soft tissue
regions of the scan. This illustrates the effect of the addition
of the noise on 2D slices of the 3D volumes that were investi-
gated. Table II quantitates the perceived noisiness. The val-
ues in Table II represent the standard deviation of HU values
taken from an ROI in the liver of each patient, averaged over
all of the patients. It can be seen that the noise increases with
the decrease of mAs.

3.B. Image registration

An example of the registration results for both a baseline
and 20 mAs scan pair is shown in Fig. 4. Although the regis-
tration was performed in 3D, 2D slices have been shown for
clarity. Figures. 4(a) and 4(c) show the exhalation superim-
posed with inhalation. Mismatches can be seen between the
exhalation and inhalation images, especially near the base of
the lung. Figures. 4(b) and 4(d) show the overlay between the
warped exhalation and inhalation images. The registration
accounts for the lung deformation well, with little mismatch
seen between the warped end-exhalation and end-inhalation
images, for both the baseline and reduced mAs scans. The
registration accuracy visually appears to be similar, regardless
of injected noise.

3.C. Quantitative analysis

Table III shows the maximum and average voxel displace-
ments for the baseline, and simulated reduced mAs scans for
all patients. The first column indicated the maximum value
over all patients, while the subsequent columns indicate the
displacement errors averaged over all of the considered
patients. For each dataset, the model-generated displacement
vectors were compared with the registration-generated effec-
tive ground truth displacement vectors, and the average dis-
placement error and percent of voxels with error <1 and
0.5 mm were tabulated. A two-sample t test considering a
significance level of 0.05 showed that all of the tabulated val-
ues for the simulated 20 mAs scans were not significantly
different than the baseline displacement values.

It can be seen that the displacement metrics obtained for
all three mAs levels were quite similar to the baseline scans.
The error increased most at 20 mAs, but were reasonable
with respect to the baseline results. This supports the fact that
the displacement results for the elastography process remain
similar to the baseline even with the mAs reduced to 20.

Figure 5(a) shows the estimated elasticity distributions for
a 2D slice of a baseline CT scan. Figure 5(b)–5(d) shows the
absolute difference between the baseline scan and 30 mAs
(b), 25 mAs (c), and 20 mAs (d) scans. On average, the error
was <0.62 kPa, which is small compared to the average lung
elasticity of 6.59 kPa. The highest error was seen near the
lower lobes of the lung, where displacement would be great-
est. This is further illustrated in Table IV. Table IV quanti-
tates the elasticity error between that estimated from the
baseline and reduced mAs scans. Maximum elasticity error
(over all patients), average elasticity error, and error <0.5 and
3 kPa (averaged over all of the considered patients) are listed
for each dose reduction. The individual column values were
averaged over all of the considered patients. The elasticity
error increases as the dose is reduced; however, even with a
current–time product of 20 mAs, the average elasticity error
remained <0.76 kPa.

Table V shows the percentages of voxels in which the
low-dose elasticity estimations converged within 1 kPa of the
baseline elasticity estimation results, binned by underlying
elasticity value. It can be seen that the high-elasticity bin had
the most error. Since lung diseases, such as diffuse lung dis-
ease and COPD, are known to be associated with lower than
normal values, this result supports the fact that low-dose CT
elastography can be performed accurately for these patients.

Table VI shows the NCC values between (a) the reduced
mAs and baseline ground truth displacement, (b) the reduced
mAs and baseline-estimated elasticity distributions, and (c)
the reduced mAs ground truth and model displacement. The
reduced mAs displacement values were similar to the

FIG. 3. Example of exhalation lung baseline (a), 30 mAs (b), and 20 mAs (c) scans.

TABLE II. Quantitative example of noise values calculated by taking the stan-
dard deviation of an ROI in the liver of each patient.

Average Std. Dev. Of ROI in soft tissue (HU)

Baseline (40 mAs) 42.88

30 mAs 104.40

25 mAs 123.58

20 mAs 153.16
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baseline displacement values, with similarity decreasing with
decreased mAs as expected. However, the estimated elasticity
distributions were similar in all cases, as were the effective

ground truth and model displacements for each mAs reduc-
tion. This demonstrates that low-dose CT-based model dis-
placements can be used to characterize lung tissue
deformations during breathing.

FIG. 4. Example of registration for baseline (a & b) and 20 mAs (c & d) CT scans. (a & c) show the endexhalation overlain with end-inhalation. (b & d) show the
warped exhalation superimposed with inhalation.

TABLE III. Maximum displacement results over all patients and average displacement error results for original, and reduced mAs scans.

Average
Maximum displacement

(mm)
Average displacement

(mm)
Average displacement error

(mm)
Error < 1 mm

(%)
Error < 0.5 mm

(%)

Baseline
(40 mAs)

13.79 4.89 0.42 � 0.31 84.02 65.08

30 mAs 12.01 4.08 0.52 � 1.52 85.03 65.27

25 mAs 13.72 4.27 0.53 � 1.53 84.96 63.91

20 mAs 12.46 4.21 0.56 � 1.56 84.00 62.08

FIG. 5. Estimated elasticity distribution in kPa for baseline CT scan (a). Absolute difference between baseline and 30 mAs (b), 25 mAs (c), and 20 mAs (d)
scans.

TABLE IV. Maximum elasticity error results and average elasticity error
results between the baseline-estimated elasticity and reduced mAs-estimated
elasticity.

Maximum
elasticity
error (kPa)

Average
elasticity
error (kPa)

Error < 0.5 kPa
(%)

Error < 3 kPa
(%)

30 mAs 7.25 0.65 75.56 92.44

25 mAs 6.96 0.71 71.46 92.27

20 mAs 7.40 0.76 68.07 91.70

TABLE V. Elasticity errors for low, mid, and high-elasticity bins for each low
mAs simulation.

Low elasticity range
error < 1 kPa (%)

Mid elasticity range
error < 1 kPa (%)

High-elasticity
range error < 1 kPa

(%)

Average 95.81 94.13 63.81

30 mAs 96.85 94.95 66.86

25 mAs 95.67 94.11 63.99

20 mAs 94.91 93.32 60.59
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The NCC values for 30, 25, and 20 mAs are very similar,
illustrating that current–time product could be reduced to as
low as 20 mAs and still provide equivalent elastography
results. A two-sample t test considering a significance level
of 0.05 was performed and did not show significant differ-
ence, though claims of significance are precluded by the
small sample size.

4. DISCUSSION

In this study, low mAs CT scans were simulated using a
noise injection process in order to determine the effect of
noise on our lung elastography process. Simulated scans with
tube current–time products representing 30, 25, and 20 mAs
were investigated. The results of the baseline scans and low
mAs simulated scans were similar indicating that low-dose
CT scans could produce reliable elastography results. For
example, 20 mAs scans had greater than 94% accuracy when
used for elastography purposes when compared to baseline.
Since the baseline scans were taken with mAs of 40 mAs and
an effective dose of 1.2 mSv, this suggests that the effective
dose could be reduced to about 0.6 mSv per scan while still
obtaining useful elastographic information. In order to find
the lower dose limit for elastography assessment, scans with
simulated tube current–time products below 20 mAs will be
investigated in future studies.

We identify a few limitations to this study. Firstly, the
noise injection code assumed no tube current modulation,
which is not typically employed in radiation therapy but is
often employed for diagnostic purposes. The algorithms to
select tube current modulation are proprietary and depend on
the capability of the x-ray generator, which place limits on
the slew rate of the tube current. The lack of modulation cre-
ates increased noise at the top or bottom of the image as the
shoulders or abdomen starts to appear. However, as the
parenchymal tissue is located near the center of the image on
the chest CT, we believe these artifacts will not affect the
parenchymal registration process.

Secondly, the quality of the elastography results depends
on the quality of the DIR, which is affected by the addition of
noise. The displacement-based error evaluation was per-
formed in order to attempt to quantify the effects of the addi-
tional noise. DVFs are highly dependent on pre-processing
steps; however, the DVFs were obtained in the same manner
for both baseline and low mAs results to ensure a fair

elastography comparison. In the future, registration algo-
rithms that are more robust to high imaging noise will be
investigated. Furthermore, as the intent of this study was to
assess the impact of noise, no noise mitigation techniques
were employed, which can be investigated before clinical
application.

Thirdly, we employed image domain-based noise injection
performed using simulation of the filtered backprojection
process. This captures some of the spectral characteristics
and noise statistics of the data, but it is not as accurate as
noise injection in the raw data domain20 or actual collection
of data at reduced dose. In particular, our process of noise
injection through simulated noise filtered backprojection
does not capture through-plane noise correlations, may not
accurately model tube current modulation, and does not per-
fectly capture the spectral characteristics of the reconstructed
data at high frequencies as our apodization filter was empiri-
cally tuned rather than perfectly matched with the reconstruc-
tion kernel used to generate the original image data. An
alternative approach is to add in colored noise to the image
domain directly, shaping the noise spectrum to match typical
regions within the patient. This option makes comparatively
fewer assumptions and is attractive because of its simplicity.
However, it does assume that the noise is stationary, which is
violated in highly attenuating regions where noise streaks
occur. In general, noise injection into images is not a standard
technique because it is generally accepted that all existing
solutions require approximations. Future work will focus on
extending the noise injection technique to the raw data
domain, which requires prospective collection of raw data
but has much improved accuracy.

Finally, the sample size for this analysis was small and
precluded any claims of statistical significance. More data
will be collected and analyzed in the future to ensure the
results are statistically significant.

5. CONCLUSIONS

Our study suggests that pairs of CT scans acquired with as
low as 20 mAs each could be used to reliably perform elas-
tography, exposing the patient to a total dose of 1.2 mSv,
substantially less than the average diagnostic CT effective
dose. These results indicated the feasibility of performing
elastography using low mAs CT scans, expanding the poten-
tial of CT-based elastography.

TABLE VI. Image similarity metrics between the baseline and reduced mAs ground truth displacement, reduced mAs ground truth and model displacement, and
baseline and reduced mAs elasticity.

NCC
(mAs)

Low-dose displacement vs baseline
displacement

Low mAs estimated elasticity vs baseline
estimated elasticity

Low mAs ground truth displacement vs low mAs
model displacement

30 0.987 0.977 0.986

25 0.984 0.975 0.986

20s 0.984 0.973 0.985
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