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Purpose: Lung diseases are commonly associated with changes in lung tissue’s biomechanical prop-

erties. Functional imaging techniques, such as elastography, have shown great promise in measuring

tissue’s biomechanical properties, which could expand the utility and effectiveness of radiotherapy

treatment planning. We present a novel methodology for characterizing a key biomechanical prop-

erty, parenchymal elasticity, derived solely from 4DCT datasets.

Methods: Specifically, end-inhalation and end-exhalation breathing phases of the 4DCT datasets

were deformably registered and the resulting displacement maps were considered to be ground-truth.

A mid-exhalation image was also prepared for verification purposes. A GPU-based biomechanical

model was then generated from the patient end-exhalation dataset and used as a forward model to

iteratively solve for the elasticity distribution. Displacements at the surface of the lungs were applied

as boundary constraints for the model-guided tissue elastography, while the inner voxels were

allowed to deform according to the linear elastic forces within the biomechanical model. A conver-

gence criteria of 10% maximum deformation was employed for the iterative process.

Results: The lung tissue elasticity estimation was documented for a set of 15 4DCT patient datasets.

Maximum lung deformations were observed to be between 6 and 31 mm. Our results showed that, on

average, 89.91 � 4.85% convergence was observed. A validation study consisting of mid-exhalation

breathing phases illustrated an accuracy of 87.13 � 10.62%. Structural similarity, normalized cross-

correlation, and mutual information were used to quantify the degree of similarity between the fol-

lowing image pairs: (a) the model-generated end-exhalation and ground-truth end-exhalation, and (b)

model-generated mid-exhalation images and ground-truth mid-exhalation.

Conclusions: Overall, the results suggest that the lung elasticity can be measured with approxi-

mately 90% convergence using routinely acquired clinical 4DCT scans, indicating the potential for a

lung elastography implementation within the radiotherapy clinical workflow. The regional lung elas-

ticity found here can lead to improved tissue sparing radiotherapy treatment plans, and more precise

monitoring of treatment response. © 2017 American Association of Physicists in Medicine [https://

doi.org/10.1002/mp.12697]
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1. INTRODUCTION

Lung cancer is the leading cause of cancer-related death

worldwide.1 Lung cancer is usually treated with radiotherapy,

but radiotherapy treatment planning is especially difficult for

lung cancer because of inherent anatomical and physiological

complexity. Many lung diseases, including lung cancer, are

associated with changes in lung tissue biomechanical proper-

ties.2 For instance, pulmonary emphysema and fibrosis are

known to be associated with changes in the parenchymal

stiffness. Using excised tissue studies, it has been shown that

localized changes in the biomechanical properties of lung

parenchyma preceded the initiation and progression of certain

lung diseases.2,3 However, the ability to quantify and localize

pulmonary disease onset and progression at a regional level

using in vivo studies is currently limited. Gold-standard

spirometry-based estimates are the current state of the art

approach used for overall chronic disease characterization4

but do not explicitly characterize regional lung biomechanical

information.5 While computed tomography (CT), specifically

4DCT, is commonly used for lung radiotherapy imaging and

treatment planning purposes, it does not present a quantita-

tive characterization of the lung biomechanical properties.6

A critical lung biomechanical property related to

parenchymal tissue stiffness is the elastic modulus. Elastogra-

phy is a noninvasive imaging technique for quantifying the

elasticity distribution of the tissue.7 Currently, elastography

techniques exist across several modalities including MR,

ultrasound, and manual palpation.8–10 The complexity of the

lung anatomy, particularly the air in the lungs, renders current

elastography techniques difficult to implement.11–14 Addition-

ally, none of the aforementioned imaging techniques are read-

ily available within the radiotherapy workflow.15

To further the uses of elastography within the radiotherapy

context, this paper investigates the application of elastogra-

phy using 4DCT scans of the human lung. We hypothesize
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that such an approach will enable lung tissue elastic proper-

ties to be estimated using conventional radiotherapy imaging

modalities. A critical step in furthering the uses elastography

within the radiotherapy context is the need to quantitatively

validate the lung elasticity measurements. Once validated,

these properties can be used for advancing lung cancer treat-

ment planning and delivery, and monitoring treatment

response.

Our lung elastography process focused on identifying an

effective Young’s modulus (E) for each voxel of lung tissue

on a 4DCT scan. The approach was based on modeling the

lung tissue behavior during breathing. Using a well-estab-

lished, linear elastic constitutive model, we mathematically

formulated the lung tissue elasticity estimation as an inverse

problem that was solved with an iterative optimization of the

elasticity distribution.16,17

The ground-truth tissue behavior was characterized from

the 4DCT datasets. 4D displacement vector fields (DVF)

obtained from deformable image registration were employed

as a boundary constraint to guide the elastography process.18

A key component of this paper is the quantitative validation

of the estimated lung elastography distributions. As 4DCT

scans have data for every phase of the breathing cycle, valida-

tion is performed by analyzing mid-exhalation.

The rest of the paper is organized as follows: Section 2

introduces the methods employed for the elastography and

the validation processes. Section 3 presents the qualitative

results of the deformable image registration, elastography,

and validation process, while Section 4 presents a numerical

analysis of the results. Section 5 presents a discussion of the

results and highlights the areas for continued research, and

Section 6 concludes the paper.

2. METHODS

Our elastography process focused on the effective Young’s

modulus (E) estimation for each voxel of lung tissue using

4DCT lung data. Figure 1 shows a flowchart summarizing

the elasticity estimation. First, the end-inhalation and the

end-exhalation breathing phases from the 4DCT lung images

were registered using an optical flow deformable image regis-

tration (DIR) algorithm. The lung DVF was obtained for

every voxel of the end-exhalation breathing phase. The

biomechanical model was then assembled using the end-

exhalation lung geometry along with a random elasticity

distribution as the initial elasticity value. Using the ground-

truth lung DVF, the elasticity distribution was optimized.

Spatial elasticity and displacement error distributions were

obtained and validated (Section 3).

In this section, we first briefly present the DIR technique

used to obtain the ground-truth DVF. Next, we present the

constitutive model used for representing tissue biomechanics

in order to solve the inverse elasticity problem. We then pre-

sent the optimization process used in the iterative elasticity

estimation. This is followed by a discussion of the conver-

gence criteria used for the optimization process. We then

describe the image similarity metrics used in our study to

characterize the quantitative accuracy of the estimated elastic-

ity combined with the constitutive model. We conclude the

section with a discussion of the validation study.

2.A. Deformable image registration

The model-guided elasticity approach presented in this

paper relies on displacement values extracted from DIR of

4DCT datasets. The lung is a challenging organ to register

and requires DIR due to the large deformation caused by res-

piration. A patient cohort of 15 4DCT datasets that were

acquired using 5DCT protocol (IRB# 11-000620-CR-00004)

was employed for the elasticity estimation.19–21 The patient

cohort consisted of lung cancer patients undergoing SBRT at

UCLA. The average age of the patients was 66, six of the

patients were male, and nine were female. The 4DCT scans

were acquired on Siemens Definition Flash, Siemens Bio-

graph 64, and Siemens Definition AS 64 scanners with 1 mm

slice thickness.

The left and right lungs were segmented using an inten-

sity-based thresholding approach.22 Segmented end-inhala-

tion (85th percentile breathing amplitude) were deformably

registered to the spatial domain of the end-exhalation (15th

percentile breathing amplitude) breathing phases using a

well-validated in-house multilevel optical flow DIR algo-

rithm.18 This registration algorithm has been well-validated

for both the lung and head and neck anatomies23,24; therefore,

we trust the resulting DVF to be an effective representation of

the ground-truth lung motion. The registered DVF for each

voxel will be taken to be the effective ground-truth displace-

ment, henceforth denoted as simply ground-truth, for the

elasticity estimation process.

FIG. 1. Flowchart showing 4DCTelasticity estimation process.
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2.B. Constitutive model

The model presented in this section is focused on comput-

ing the lung tissue deformation for a given lung boundary

displacement arising from the ground-truth DVF, as previ-

ously demonstrated.25 The model has been previously

described in Ref. [26,27] and specifically applied to the

lungs.28,29 This approach is appropriate for our current study

as its applicability has been systematically investigated.29 For

clarity purposes, a brief description of the constitutive equa-

tions for the forward model27 is presented here.

2.B.1. Model geometry

The biomechanical lung model was assembled from the

4DCT end-exhalation images. The model geometry was rep-

resented by finite element nodes corresponding to the center

of each voxel in the end-exhalation image. Lung tissue, an

elastic material, was viewed as a series of these finite mass

elements coupled with linear elastic connections to adjacent

mass elements in deformation space. This was to ensure a

physically realistic deformation. Rest length and orientation

of each connection were then documented and assigned an

initial effective Young’s modulus and a Poisson’s ratio of

0.43.30–32

2.B.2. Model physics

In our approach, linear elastic constitutive laws were

implemented because linear elastic representations have been

found to be effective in describing normal lung tissue defor-

mations typically observed in 4DCT-based lung motion.33

Additionally, a study investigating lung tumor motion during

external beam radiotherapy found that a hyperelastic constitu-

tive law performed very similarly to linear elastic constitutive

law at deformation magnitudes found within the lungs during

normal breathing.32

The model is actuated due to changes in boundary con-

straints, which subsequently calculates corrective forces on

each mass element for given boundary constraints. In our

approach, we compute the boundary constraints from the

lung boundary DVF. The corresponding corrective forces on

each mass element were calculated by summing elastic, shear,

and dashpot damping forces for each connected element. The

elastic force (f~E; abÞ acting between two mass elements a and

b is described by:

f~E; ab ¼
X

b

Eab �
DLab

Lab

� �

; (1)

where Eab is the effective Young’s modulus acting between

the two elements a and b, and Lab is the rest length distance,

and DLab is the change in length between the two elements.

As lung tissue is modeled as a linearly elastic material, (1) is

derived from the inverse relationship between Young’s modu-

lus and displacement; for a constant force, if elastic modulus

increases then displacement must decrease and vice versa.17

The shear spring force (f~S; abÞ on element a due to element

b is described by

f~S; ab ¼
X

b

Sab �
Lab � DLab

Lab

� �

; (2)

where Sab is the shear moduli between element a and b, set to

4 kPa for each voxel in our estimations, an approximation

based on the relationship between shear modulus, Young’s

modulus, and Poisson’s ratio and similar to values seen in

Ref. [34,35]. The dashpot damping force is calculated from

the relative velocities v~ of elements a and b, and a local

damping factor lab.

f~v; ab ¼
X

b

lab � ðvb
!� va

!� �

Þ: (3)

The new positions and velocities of each mass element

x~nþ1
a ; v~

nþ1
a

� �

were then updated from the previous values

x~n
a; v~

n
a

� �

using Implicit Euler integration and the total internal

corrective force fa
!
.

v~
nþ1
a ¼ v~

n
a þ

f~a
ma

þ g~

 !

d; (4)

x~nþ1
a ¼ x~n

a þ v~
nþ1
a d: (5)

In (4) and (5), d is the time step between iteration, ma is

the mass of each mass element a, and g~ is the acceleration

due to gravity. The distance between the new and previous

positions of each mass element was taken to be the displace-

ment for that mass element, henceforth denoted as da.

2.C. Inverse elasticity formulation

For clarity, the simplifying notation that will be used in

this paper is listed in Table I.

The inverse elasticity problem was formulated as a param-

eter-optimization problem with an objective to determine the

elasticity parameter that would minimize the difference

between the ground-truth DVFs (DVFDIR,A) and those com-

puted by the constitutive model. Solving this inverse elastic-

ity problem was carried out in two steps: (a) estimating the

DVF for every voxel of tissue for a given elasticity distribu-

tion and changes in boundary constraints, and (b) optimizing

the elasticity distribution to best reproduce the DVFDIR,A.

TABLE I. Notation and description for resultant terms utilized in the manu-

script.

Notation Description

DVFDIR,A Ground-truth end-exhalation to end-inhalation DIR DVFs

DVFDIR,B Ground-truth end-exhalation to mid-exhalation DIR DVFs

DVFModel,A Model-generated end-exhalation to end-inhalation DVFs

DVFModel,B Model-generated end-exhalation to mid-exhalation DVFs

EA Effective elasticity distribution obtained from minimizing error

between DVFDIR,A and DVFModel;A.
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In the first step, we applied the lung boundary conditions,

and the interior mass elements were allowed to deform

according to the elastic constitutive forces within the model,

described in Section B above. For the second step, the itera-

tive scheme for estimating the elastic distribution is based on

the inverse relationship between Young’s modulus and dis-

placement. Given an initial Young’s modulus distribution, the

constitutive model computed mass element displacements.36

These displacements were then compared with DVFDIR,A, and

the effective Young’s modulus was iteratively updated until

the difference between the above two displacement maps was

minimal. New displacements values were generated for each

iteration by updating the effective Young’s modulus distribu-

tion as described below.

Initial (Ea), minimum (Emin,a), and maximum (Emax,a)

Young’s modulus values were initialized for each voxel a in

the biomechanical model. For lung elastography purposes,

the Young’s modulus range was set to be from 1 to 20 kPa,

an extended approximation of values from the literature.37

The displacement differential was calculated according to the

following relationship:

Dda ¼ kd0;a � dak; (6)

where d0,a and da refer to the ground-truth and model-gener-

ated displacements of voxel a, respectively. The displacement

differential was then used to binaurally update the Emin,a and

Emax,a:

if Dda\0 :
Emin;a ¼ Ea

Emax;a ¼ Emax;a

�

; (7)

if Dda[ 0 :
Emin;a ¼ Emin;a

Emax; a ¼ Ea

�

: (8)

A new E0
a, which became the initial value for the next iter-

ation, was then generated at each iteration according to the

modified Gauss–Newton optimization scheme 38 with a step

size

DEa ¼ Emax;a � Emin;a

� �

; (9)

E0
a ¼ Ea þ DEa: (10)

After the elasticity was updated, the biomechanical model

was then reset to the initial undeformed rest position, and the

boundary constraints were reapplied. The reconstruction pro-

cess was repeated until a suitable stopping (convergence) cri-

teria was reached. Upon convergence, the resultant elasticity

estimation (EA) is recorded along with the resultant deforma-

tion vector for each voxel (DVFModel;AÞ.

2.D. Convergence metrics

The convergence metrics utilized in this study are a critical

component to interpreting the results. At each iteration of the

elasticity estimation, the resultant model DVF, DVFModel;A,

were compared to DVFDIR,A. The number of voxels that con-

verged within a certain � value of ground-truth was quantified

as follows:

ca ¼
1 : kjdaj � jda;0jk\�

0 : otherwise

�

(11)

p� ¼

Pn
1 ca

n
: (12)

In (11), (�) represents the L2-norm of the DVF for each

voxel a and ca represents the error for each voxel. The per-

cent accuracy p� was then tabulated by summing the ca over

all n voxels in lung volume V using (11) and (12). For elas-

tography purposes, the iterative process was stopped when

p� ≥ 0.95. The maximum iteration limit was set to be 100.

Factors that impact the convergence criteria are deter-

mined by image resolution and range of DVF values. In our

case, the image resolution was limited to 1 cubic mm, which

led to a �1 = 1 mm. Image resolution is also impacted by the

signal in the underlying tissue. Higher signal-to-noise (SNR)

is generally observed in blood vessels due to the high con-

trast and constant structure during deformation, while

parenchymal tissue exhibits lower SNR. For this reason,

accuracy will be considered for voxels representing blood

vessels and parenchymal tissue separately. The voxels repre-

senting the two substructures were segmented using an inten-

sity threshold of �500 HU.39

As lung deformation can vary widely between patients and

breathing phases, we also formulated a convergence criteria,

where the percent of voxels converged within 10% of the

minimum deformation, or �2 = 0.1*maxa(| da | ). For each

4DCT dataset, we computed the minimum value among �1
and �2, and employed that for the optimization process. How-

ever, once the elasticity estimation converged, the results

were evaluated according to both convergence criteria.

2.E. Image similarity metrics for quantitative
evaluation

While the convergence criteria provided a quantitative way

to assess the elasticity estimation accuracy, an additional met-

ric was necessary to ensure the precision of the estimated

elasticity. Specifically, we wanted to ensure that EA and

DVFModel;A could be used to warp the end-exhalation image

to closely represent the end-inhalation image. In addition, the

usage of image similarity metrics could quantify the accuracy

of the ground-truth data. The image similarity metrics will be

quantified for both the estimation and validation datasets.

The results will be compared for significant difference using

the Student’s t-test. For this purpose, three different image

similarity metrics were utilized.

2.E.1. Structural similarity index metric

The structural similarity index metric (SSIM) was the first

image similarity metric we investigated. SSIM has been pre-

viously investigated for the lung, and examines structural

changes that more closely correlate with a visual evaluation

rather than differences that do not contribute to perceived

image quality, which is important for lung.40–42
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The SSIM 43 is formulated as follows:

SSIM x; yð Þ ¼
2lxly þ c1
� �

2rxy þ c2
� �

l2x þ l2y þ c1

� �

r2x þ r2y þ c2

� � (13)

The SSIM can vary between �1 and 1, where a score of 1

indicates perfect similarity using the equation below. The

parameters of (13) include spatial patches extracted from two

images x and y, the mean of the voxel intensities in x and y

(l), the variance of the intensities in the x and y (r), and the

covariance (rxy).

2.E.2. Normalized cross-correlation

Another image similarity metric that was used to assess

the results of our study was normalized cross-correlation

(NCC). NCC is a simple but effective similarity measure that

is invariant to brightness and contrast variations.44 NCC has

been previously used to compare similarity of medical lung

images in44 and has the advantage that it is less sensitive to

linear changes in amplitude of grayscale values. NCC is often

used to overcome intensity changes caused by tissue com-

pression difference between different breathing phases.45

Like SSIM, NCC values range from a perfect match of 1 to a

completely anticorrelated match of �1. The equation for cal-

culating the NCC is shown as

NCCðx; yÞ ¼ Cxyðx̂; ŷÞ ¼
X

i;j2R
x̂ði; jÞ; ŷði; jÞ; (14)

where x̂ and ŷ are intensity normalized warped end-exhala-

tion and end-inhalation images.

2.E.3. Mutual information

The final image similarity metric that we used was mutual

information (MI), which is a symmetric and nonnegative sim-

ilarity measure of entropy between two images that takes high

values for similar images. Maximization of MI indicates

complete correspondence between two images. MI assumes

no prior functional relationships between the images, but

rather a statistical relationship that can be evaluated by ana-

lyzing the images’ joint entropy.46 Although MI is normally

applied to multimodal registration, it is often commonly used

for lung alignment.47

Assuming two images x and y, the mutual information is

computed by comparing the image entropy values (i.e., a mea-

sure of how well-structured the common histogram is) allows:

MI x; yð Þ ¼ H xð Þ þ H yð Þ � H x; yð Þ (15)

where H x; yð Þ is the joint entropy

�
X

x;y

pxy x; yð Þ log pxy x; yð Þ (16)

and H xð Þ and H yð Þ are the individual entropies

�
X

x
pxðxÞ log pxðxÞ: (17)

2.F. Validation study

A key part of our focus is to validate the estimated elastic-

ity using clinical datasets. However, patient-specific elasticity

distributions have not been previously documented in the lit-

erature. For quantitative validation purposes, we employed a

mid-exhalation breathing phase from the 4DCT dataset that

was not used for the elasticity reconstruction. An illustration

of the lung deformation differences seen between the estima-

tion dataset and the validation dataset is shown in Fig. 2

below. The end-exhalation segmented CT is shown in (a).

Figure 2(b) shows the magnitude of displacement between

the end-exhalation and end-inhalation breathing phases used

in the elasticity estimation, while Fig. 2(c) shows the magni-

tude of displacement between the end-exhalation and mid-

exhalation breathing phases used in the validation study.

FIG. 2. Comparison of the breathing phases utilized for elasticity estimation. Source end-exhalation image is shown in (a). The displacement between end-exha-

lation and end-inhalation is shown in (b), and the displacement between end-exhalation and mid-exhalation is shown in (c) with the same colorbar. [Color figure

can be viewed at wileyonlinelibrarycom]
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The accuracy of the elasticity distribution EA derived from

end-inhalation breathing data was quantified by its ability to

also represent the mid-exhalation breathing data. Specifically,

the mid-exhalation breathing image dataset was first regis-

tered to the end-exhalation breathing phase using the optical

flow DIR algorithm. These DVFs were then recorded as

DVFDIR,B. The elasticity information (EA) estimated using

DVFDIR;A was applied to the biomechanical lung model

according to the boundary conditions described in Sec-

tion 2.A.2 with lung surface displacement now prescribed by

DVFDIR,B, which generated DVFModel,B. The DVFModel,B were

then compared to the DVFDIR;B, and the accuracy was

reported according to the convergence criteria (Section 2.D).

As an alternative means of quantifying and describing the

validation results, image similarity measures (Section 2.E)

were employed to compare end-exhalation images warped

with both DVFDIR,B and DVFModel,B to the validation mid-

exhalation images. Our hypothesis is that the image similarity

measures for the DVFDIR,B and DVFModel,B will be similar to

those of DVFDIR,A and DVFModel,A.

2.G. Implementation details

The computational complexity of iteratively updating

high-resolution finite element model27 until convergence

was countered using a GPU cluster that consisted of 32

NVDIA TitanX GPUs interconnected by an Infiniband

backbone. The GPU cluster allowed the elasticity estima-

tion for each patient lung dataset to converge in around 2 h

of computation time. The numpy and scikit packages of

Python 2.7 were used numerical analysis in this manu-

script.48

3. QUALITATIVE RESULTS

In this section, we first present the qualitative DIR results,

followed by the elasticity estimation results for all the 15

datasets. Finally, we present the qualitative results of the vali-

dation process.

3.A. Deformable image registration

The accuracy of the DIR results is critical in order to

ensure the DIR’s validity as ground-truth data for the elastog-

raphy procedure. Figure 3 illustrates an example of the

deformable image registration results for a 2D-slice of the left

(a & b) and right (c & d) lung. Figures 3(a) & 3(c) show an

overlay of the end-exhalation image in green and end-inhala-

tion image in red. The misalignments between slices are

depicted in red (features that are only seen in end-inhalation

image) and green (features that are only seen in the end-exha-

lation image). Significant motion can be observed between

the two images in each case. Figures 3(b) and 3(d) show an

overlay of the end-exhalation image warped using DVFDIR,A,

and the end-inhalation, illustrating the high accuracy at which

our in-house optical flow DIR algorithm can calculate DVFs.

The maximum DVFDIR,A was observed to be between 6 and

31 mm, while the maximum DVFDIR,B was observed to be

between 2 and 10 mm.

3.B. Elasticity estimation results and accuracy

Over all 15 patient lung datasets, 89.91 � 4.85% of voxels

converged within �2. To illustrate elasticity results and corre-

late these results to displacement accuracy, Figure 4 show

the displacement accuracy corresponding with a resultant

elasticity map for a 2D-slice of a left patient lung.

Figure 4(a) shows the ground-truth displacement in mm

(DVFDIR,A), while Fig. 4(b) shows the model displacement

also in mm ðDVFModel;AÞ. Figure 4(c) shows the displacement

error between 4(a) and 4(b), with error greater than 1 mm

(�1) highlighted in purple and error greater than 1.2 mm (�2)

highlighted in blue. Finally, Fig. 4(d) shows the optimized

elasticity map, EA, in kPa. It can be seen that the DVFDIR,A

and DVFModel;A are very similar, with low error illustrated in

Fig. 4(c). The minimal displacement error supports the valid-

ity of the elasticity estimated for this case. Regions of low

motion correspond to regions of lower elasticity; this is due

to our underlying assumption guiding the elasticity update

FIG. 3. Deformable image registration results for sample left (a and b) and right (c and d) 2D lung slice. (a and c) illustrate an overlay of end-exhalation and end-

inhalation (b and d) overlay of warped end-exhalation and end-inhalation. [Color figure can be viewed at wileyonlinelibrarycom]
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process. Though the displacement distributions are relatively

smooth, the resultant elasticity distribution varies from voxel

to voxel. As no ground-truth elasticity distributions are avail-

able for absolute elasticity accuracy calculations, validation

was performed using mid-exhalation breathing phase 4DCT

data. The results of the validation process will be qualita-

tively evaluated in the following section.

3.C. Validation

On average, the validation datasets converged with

87.13 � 10.62% of voxels within �1. To illustrate the valida-

tion process and results, we present Fig. 5. Figure 5(a) shows

the DVFDIR,A for a 2D slice of the right lung in mm. Fig-

ure 5(b) shows the EA estimated from the DVFDIR,A in 5(a)

for the corresponding slice. The validation displacement for a

2D slice of the right lung (DVFDIR,B) is shown in mm in

Fig. 5(c). Figure 5(d) shows the resultant model displace-

ment in mm after the lung biomechanical model is deformed

with the EA seen in Fig. 5(b) (DVFModel,B). Figure 5(e)

illustrates the displacement error between 5(c) and 5(d), with

error greater than 0.4 mm, e2, highlighted in blue. While a

cluster in the center of the slice shown in 5(c) had error

higher than e2, a majority of the voxels converged with a

high accuracy, illustrating the estimated elasticity’s validity

in representing the DVFDIR,B. The decrease in e2 due to the

decrease in maximum lung displacement can also explain the

higher error seen in Fig. 5(c). The results will be analyzed

further in the following section.

4. QUANTITATIVE EVALUATION

In this section, we first present the image similarity mea-

sures for the DIR, followed by a numerical analysis of the

elasticity estimation and validation results.

4.A. DIR

The quantitative image similarity of the DIR was docu-

mented for two image pairs: (a) the DVFDIR,A-warped end-

FIG. 5. 2D-slice illustrating (a) end-inhalation ground-truth displacement DVFDIR,A in mm, (b) estimated elasticity in kPa, (c) mid-exhalation ground-truth

DVFDIR,B in mm, (d) mid-exhalation model DVFModel,B in mm, and (e) error between (a) and (b) with error greater than 0.4 mm highlighted. [Color figure can be

viewed at wileyonlinelibrarycom]

FIG. 4. 2D-slice illustrating (a) ground-truth displacement DVFDIR,A, (b) model displacement DVFModel,A, (c) displacement error between (a) and (b) with error

greater than �1 and �2 highlighted respectively and (d) resultant elasticity distribution. [Color figure can be viewed at wileyonlinelibrarycom]
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exhalation and end-inhalation images, and b) DVFDIR,B-

warped end-exhalation and mid-inhalation images. Table II

summarizes the results for both (a) and (b), respectively.

On average for (a), image pairs had an SSIM of 0.88,

NCC of 0.99, and an MI of 1.94, indicating a high similarity.

This illustrates the high accuracy of the DVFDIR,A that were

used as ground-truth throughout the elastography process.

For the validation DIR (b), image pairs had an average SSIM

of 0.89, NCC of 0.99, and MI of 1.81. These numbers are not

significantly different (P > 0.05) from the SSIM, NCC, and

MI values of (a), confirming our hypothesis and illustrating

the accuracy of the DVFDIR,B used to validate the elastogra-

phy process.

4.B. Elasticity estimation results and accuracy

The quantitative results of our elasticity estimation for the

15 patient lung datasets are now presented. Table III indicates

the average elasticity, displacement, displacement error, and

e2 accuracy for each patient lung dataset. Overall,

89.91 � 4.85% of voxels converged within the prescribed

e2. All patient datasets converged with greater than 80% of

voxels within e1 or e2. The average elasticity ranged from

4.91 to 7.66 kPa. Variations in the lung physiological factors,

such as range of motion and total lung volume, did not affect

the accuracy, indicating the applicability of the elastography

process to a wide range of patients.

As mentioned in Section 2.D, two convergence criteria

were investigated to better quantify the accuracy of the

model-generated elasticity. Table IV denotes the e1 and e2
convergence percentages broken down by underlying tissue

types for the 15 4DCT patient datasets. Maximum

deformation has also been included in the table to illustrate

the difference in deformation between patients. It can be seen

that the voxels representing blood vessels had a slightly

higher accuracy than the parenchymal voxels, though it was

not significant when looking at the accuracy with regard to

e2. The higher accuracy can be attributed to the higher sig-

nal-to-noise ratio in the blood vessels when compared to the

parenchymal tissue. This illustrates that though local image

TABLE II. Image similarity metrics SSIM, NCC, and MI for patient end-

inhalation to end-exhalation registration as well as validation end-inhalation

to mid-exhalation registration.

ID

DVFDIR,A-warped end-exhalation

and end-inhalation

DVFDIR,B-warped end-exhalation

and mid-inhalation

SSIM NCC MI SSIM NCC MI

1 0.90 0.99 1.92 0.91 0.98 2.01

2 0.88 0.98 2.01 0.88 0.98 2.00

3 0.88 0.99 2.01 0.89 0.99 1.95

4 0.86 0.99 2.01 0.88 0.99 2.14

5 0.83 0.98 2.14 0.86 0.96 1.81

6 0.86 0.99 2.04 0.88 0.99 1.76

7 0.87 0.98 1.91 0.88 0.98 1.64

8 0.87 0.99 1.86 0.89 0.99 1.63

9 0.91 0.99 1.73 0.93 0.99 1.69

10 0.87 0.99 2.07 0.87 0.99 1.97

11 0.88 0.99 1.85 0.89 0.99 1.72

12 0.90 0.99 1.61 0.92 0.99 1.49

13 0.88 0.99 2.03 0.89 0.99 1.79

14 0.88 0.99 1.96 0.90 0.99 1.70

15 0.87 0.99 1.87 0.88 0.99 1.66

Av 0.87 0.99 1.94 0.89 0.99 1.80

TABLE III. Average elasticity, displacement, error, and overall accuracy for

each patient investigated in this study.

ID

Average

elasticity (kPa)

Average

displacement (mm)

Average

error (mm)

Average �2
accuracy (%)

1 7.66 5.22 0.74 89.43

2 5.87 1.62 0.23 97.75

3 6.23 2.14 0.40 90.64

4 4.91 2.39 0.38 94.37

5 7.07 6.41 0.91 92.63

6 6.37 4.14 0.68 84.38

7 6.72 4.30 0.72 85.01

8 6.79 4.76 0.75 89.39

9 6.45 4.12 0.83 83.68

10 5.17 4.84 0.62 90.78

11 5.37 3.09 0.78 80.95

12 6.14 4.96 0.63 94.26

13 7.25 3.93 0.61 92.53

14 6.20 5.01 0.81 87.29

15 5.46 3.11 0.44 95.55

Avg 6.24 4.00 0.63 89.91

TABLE IV. Voxel convergence and maximum deformation for a sample of

patient 4DCT datasets.

ID

Blood Vessels Parenchyma

Max

DVFModel,A

(mm)

�1 accuracy

(%)

�2 accuracy

(%)

�1 accuracy

(%)

�2 accuracy

(%)

1 20.30 80.85 90.32 78.93 89.32

2 6.31 98.03 86.86 97.74 85.51

3 8.58 93.83 92.02 89.26 85.63

4 12.12 94.03 95.83 90.96 94.30

5 26.31 75.73 93.87 71.74 92.47

6 14.85 89.31 93.10 75.17 83.89

7 15.68 85.75 90.55 74.07 84.70

8 19.97 87.12 92.52 79.69 89.18

9 17.32 85.33 90.49 69.24 83.41

10 16.99 90.19 95.24 76.72 90.61

11 18.58 95.16 98.27 89.55 98.12

12 20.32 88.25 95.29 79.38 94.20

13 15.53 82.37 90.90 78.58 92.82

14 21.11 82.68 91.00 73.72 87.08

15 15.59 94.20 97.27 88.14 95.43

Av 16.57 88.19 92.91 80.86 89.77

Medical Physics, 45 (2), February 2018

673 Hasse et al.: Estimation of lung elasticity from 4DCT 673



noise contributes toward estimation error as expected, the

accuracy of the parenchymal tissue is still within a clinically

applicable error range.

The SSIM, NCC, and MI metrics were used to quantify

the similarity between the ground-truth end-inhalation and

DVFModel;A-deformed end-exhalation images. Table V shows

the SSIM, NCC, and MI for these results. On average, the

end-inhalation and DVFModel;A-deformed end-exhalation

images had an SSIM of 0.89, NCC of 0.97, and an MI of

1.83, indicating high similarity regardless of structural or

intensity changes between end-exhalation and end-inhalation

images. These numbers were not significantly different from

the DIR results shown in Table II, indicating that the accu-

racy of the elasticity estimation correlates to the accuracy of

the underlying ground-truth data.

4.C. Validation

The quantitative results of the validation study for the 15

patient lung datasets are now presented. On average, the vali-

dation datasets converged with 87.13 � 10.62% of voxels

within. Table VI denotes the convergence percentages

reported according to the two different � values for the valida-

tion datasets. The convergence percentages have been sepa-

rated based on the underlying tissue types. The maximum

deformation is also shown.

When compared to Table IV, Table VI shows differences

in maximum deformation values. On average, the deforma-

tion between end-inhalation and end-exhalation breathing

phases was 16.57 mm, while the deformation between end-

inhalation and mid-exhalation was 6.51 mm. Because the

maximum deformation was significantly lower for the valida-

tion datasets, the �2 accuracy decreased. As seen in Table IV,

the blood vessels had higher accuracy than the parenchymal

tissue. Again, this can be explained by the higher signal-to-

noise ratio in the blood vessels as compared to the parenchy-

mal tissue. This indicates that the validation error is still

skewed by the underlying image quality, which is consistent

with the initial results. However, the significantly smaller

magnitudes of DVFDIR,B exerted more influence on the over-

all accuracy of the elasticity estimation than the SNR.

Finally, image similarity was investigated for the valida-

tion results. Table VII shows the SSIM, NCC, and MI results

for the validation model. The end-inhalation and DVFModel;B-

TABLE V. Image similarity metrics SSIM, NCC, and MI comparing patient

ground-truth end-inhalation images to DVFModel;A deformed end-exhalation

images.

ID SSIM NCC MI

1 0.95 0.99 1.85

2 0.91 0.97 1.97

3 0.91 0.98 1.86

4 0.87 0.96 2.12

5 0.92 0.98 1.97

6 0.90 0.98 1.94

7 0.92 0.98 1.88

8 0.92 0.99 1.90

9 0.91 0.98 1.73

10 0.93 0.99 2.12

11 0.90 0.97 1.74

12 0.94 0.99 1.54

13 0.92 0.99 1.93

14 0.92 0.98 1.81

15 0.92 0.98 1.61

Av 0.92 0.98 1.86

TABLE VI. Convergence percentages for validation datasets.

ID

Blood vessels Parenchyma

Max

DVFModel,B

(mm)

�1
accuracy

(%)

�2
accuracy

(%)

�1
accuracy

(%)

�2
accuracy

(%)

1 4.90 96.17 88.44 92.31 77.01

2 2.24 94.93 84.92 90.87 56.41

3 3.34 93.74 84.38 82.48 58.64

4 4.14 88.13 77.06 78.86 50.81

5 8.85 89.90 87.99 94.77 92.70

6 4.83 96.47 90.49 95.00 75.34

7 9.56 87.88 74.08 72.13 70.10

8 7.08 85.97 83.77 69.06 62.89

9 6.94 83.20 77.40 69.64 58.20

10 8.58 86.31 85.40 55.45 51.88

11 8.50 97.11 97.31 89.63 89.33

12 9.83 85.07 85.42 71.15 71.11

13 5.81 98.39 91.79 96.36 79.63

14 7.26 94.06 89.60 83.67 72.21

15 5.72 96.16 93.04 99.04 97.66

Av 6.51 91.57 86.07 82.70 70.93

TABLE VII. Image similarity metrics SSIM, NCC, and MI comparing valida-

tion mid-exhalation images to DVFModel,B-deformed end-exhalation images

to DVFModel,A-deformed end-exhalation images2.

ID SSIM NCC MI

1 0.87 0.97 1.90

2 0.72 0.86 1.96

3 0.79 0.91 1.88

4 0.72 0.91 1.86

5 0.92 0.99 1.71

6 0.80 0.98 2.00

7 0.80 0.93 1.73

8 0.79 0.90 1.75

9 0.77 0.95 2.00

10 0.76 0.93 2.16

11 0.88 0.96 1.61

12 0.86 0.98 1.78

13 0.78 0.97 2.05

14 0.83 0.98 1.93

15 0.86 0.98 1.77

Av 0.81 0.95 1.87
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deformed mid-exhalation images had an SSIM of 0.80, NCC

of 0.95, and an MI of 1.85. These numbers are not signifi-

cantly different from the image similarity achieved in Table V

(P > 0.05), validating the accuracy and robustness of the

elasticity estimation.

5. DISCUSSION

In this paper, we presented the results of a lung elastogra-

phy process performed on 15 4DCT patient datasets. A phy-

sics-based biomechanical constitutive model was used as a

forward model to solve the inverse elasticity problem. Lung

DVFs from end-inhalation to end-exhalation breathing phases

were obtained from an in-house optical flow DIR algorithm.

The lung boundary displacements were then employed as

boundary constraints for the forward model, while the inner

voxels of the biomechanical model were allowed to deform

according to linear elastic material properties.

Using 15 clinical 4DCT datasets, this study indicated that

maximum lung deformation ranged from 6 to 31 mm and

89.91 � 4.85% of voxels converged within the prescribed

metrics. In addition, SSIM, NCC, and MI image similarity

metrics showed high similarity between both the end-inhala-

tion and DVFDIR,A-warped end-exhalation registration

images, and end-inhalation and DVFModel,A-warped end-exha-

lation experimental results, with average values of 0.89, 0.98,

and 1.90, respectively for the DIR results. Similarly, we

observed average values of 0.85, 0.97, and 1.83 for the

model-generated results.

The potential of 4DCT-based lung elastography to be used

within a clinical radiotherapy workflow required extensive

quantitative validation. Mid-exhalation 4DCT datasets were

used as validation datasets so that the elasticity results could

be validated in a radiotherapy clinically relevant manner. The

maximum lung deformation of the validation datasets ranged

from 2 to 10 mm, and 87.13 � 10.62% of voxels converged

within 1 mm of ground-truth deformation. Our results indi-

cated that convergence percentages for each of the subjects

during the elastography and validation process were similar,

citing the quantitative nature with which the process can be

used within the context of clinical radiotherapy. The accuracy

was observed to be independent of the subject’s lung DVF

magnitude, thereby indicating the applicability of such mea-

surements to a wide range of patients and breathing phases.

Future work will investigate the acquisition of total lung

capacity and functional residual capacity lung scans for vali-

dation, as these datasets are independent of 4DCT protocol

and could provide the extra benefit of determining degree of

hyperinflation and air trapping.

The average elasticity values obtained for the patient

cohort ranged from 4.91 to 7.66 kPa. These values are similar

to those seen in the literature,37 especially for patients with

diseased lungs.49 As no ground-truth elasticity distributions

are available for accuracy calculations, the accuracy of the

elasticity estimation is dependent of the accuracy of the DIR

technique and ground-truth DVF values. While we are confi-

dent in the capability of our in-house optical flow DIR

algorithm, future work will investigate in vivo tissue sample

experiments and US/MR elastography techniques for the lung

for further verification and validation purposes.

We currently foresee two challenges to the elastography

methodology implementation within a radiotherapy setup:

image artifacts and computational complexity. Firstly, the

lung elastography approach discussed in this paper is sensi-

tive to image artifacts in the 4D image dataset. SNR differ-

ences due to the underlying tissue slightly affected the

elasticity estimation, though the parenchymal accuracy was

still greater than 80%. In this study, a 5D imaging protocol

was used to acquire the 4DCT images, which eliminated

potential elasticity estimation errors arising from 4D imaging

artifacts, irregular breathing, and hyperelastic lung behavior.

Though we expect 5DCT methods to become more prevalent,

in the future, we will investigate ways to ensure elasticity esti-

mation accuracy for 4DCT datasets that are inherent with

image artifacts. We envision machine learning techniques as

an approach for predicting initial elastic material properties

that will be refined with our biomechanical model.

Secondly, the complexity of the inverse elasticity estima-

tion is a computationally intensive problem. The implementa-

tion of the methodology on a GPU cluster allowed for the

calculation of patient-specific lung elasticity distributions to

be completed in about 2 h. The implementation of these

methods and future deep learning methods on a GPU cluster

will continue to ensure that the elasticity information will be

available within a reasonable radiotherapy timeline.

We foresee a wide range of clinical applications for our

elastography method. The novel lung elastography method

utilized here is able to directly relate tissue elasticity with the

lung tissue deformation derived from clinical radiotherapy

datasets. The elasticity information obtained through this

methodology can be used to characterize response to radio-

therapy and the functionality of the lung tissue on a voxel-by-

voxel basis. Functional lung information can lead to patient-

specific radiotherapy treatment options. Several authors have

reported methods for functional imaging of the lungs for radi-

ation treatment. One example is ventilation imaging, which is

generated from the DIR of 4DCT datasets.50–52 Ventilation

imaging is based on the Jacobian of DVFs, which describe

the lung motion. However, ventilation imaging does not take

into account the underlying biomechanical properties of the

lung tissue.53 Lung elastography provides critical information

about the biomechanical properties of tissue, which have

been shown to be related to the underlying lung function and

disease. We expect elastography to provide complementary

information to current functional imaging techniques. Future

work will investigate comparing and integrating elastography

and ventilation imaging methods to more fully describe lung

function.

Beyond the context of radiotherapy, the elasticity distribu-

tions can be used to assess degree of disease in COPD

patients, track disease progression, and differentiate between

tissue affected by changes in the stiffness, for example, bron-

chitis and emphysema. Future work will focus on describing

and characterizing the lung tissue of patients with different
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stages of COPD, obtaining more scan time points, and corre-

lating changes in elasticity over time with radiotherapy and

disease progression.

6. CONCLUSION

In this paper, we presented the results of a lung elastogra-

phy study using 4DCT deformation vectors. Patient-specific

ground-truth deformation values between end-inhalation and

end-exhalation breathing were obtained for each voxel of

lung tissue using optical flow deformable image registration.

The methodology employed a constitutive physics-based

biomechanical model of the lungs that was iteratively

deformed according to patient-specific lung boundary con-

straints. An inverse analysis consisting of a modified Gauss–

Newton-based binary search optimization scheme was uti-

lized to update the spatial elasticity distribution of the lung

tissue according to the discrepancy between ground-truth and

model deformation. Our analysis showed that an average of

89.91 � 4.85% of voxels converged within a prescribed error

metric of 10% of maximum deformation. SSIM, NCC, and

MI image similarity metrics indicated high similarity between

model results and ground-truth deformation. A validation

dataset of mid-exhalation breathing phase deformation data

converged with 87.13 � 10.62% of voxels within 1 mm of

ground-truth deformation. These results indicate the quantita-

tive accuracy of the elasticity estimation process. The 4DCT

lung elastography methodology investigated here can easily

be implemented within a radiotherapy workflow and has

potential to improve patient-specific lung cancer radiotherapy

treatment options.
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