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Purpose: A critical step in adaptive radiotherapy (ART) workflow is deformably registering the sim-

ulation CTwith the daily or weekly volumetric imaging. Quantifying the deformable image registra-

tion accuracy under these circumstances is a complex task due to the lack of known ground-truth

landmark correspondences between the source data and target data. Generating landmarks manually

(using experts) is time-consuming, and limited by image quality and observer variability. While

image similarity metrics (ISM) may be used as an alternative approach to quantify the registration

error, there is a need to characterize the ISM values by developing a nonlinear cost function and

translate them to physical distance measures in order to enable fast, quantitative comparison of regis-

tration performance.

Methods: In this paper, we present a proof-of-concept methodology for automated quantification of

DIR performance. A nonlinear cost function was developed as a combination of ISM values and gov-

erned by the following two expectations for an accurate registration: (a) the deformed data obtained

from transforming the simulation CT data with the deformation vector field (DVF) should match the

target image data with near perfect similarity, and (b) the similarity between the simulation CT and

deformed data should match the similarity between the simulation CT and the target image data. A

deep neural network (DNN) was developed that translated the cost function values to actual physical

distance measure. To train the neural network, patient-specific biomechanical models of the head-

and-neck anatomy were employed. The biomechanical model anatomy was systematically deformed

to represent changes in patient posture and physiological regression. Volumetric source and target

images with known ground-truth deformations vector fields were then generated, representing the

daily or weekly imaging data. Annotated data was then fed through a supervised machine learning

process, iteratively optimizing a nonlinear model able to predict the target registration error (TRE)

for given ISM values. The cost function for sub-volumes enclosing critical radiotherapy structures in

the head-and-neck region were computed and compared with the ground truth TRE values.

Results: When examining different combinations of registration parameters for a single DIR, the

neural network was able to quantify DIR error to within a single voxel for 95% of the sub-volumes

examined. In addition, correlations between the neural network predicted error and the ground-truth

TRE for the Planning Target Volume and the parotid contours were consistently observed to be

> 0.9. For variations in posture and tumor regression for 10 different patients, patient-specific neural

networks predicted the TRE to within a single voxel > 90% on average.

Conclusions: The formulation presented in this paper demonstrates the ability for fast, accurate

quantification of registration performance. DNN provided the necessary level of abstraction to esti-

mate a quantified TRE from the ISM expectations described above, when sufficiently trained on

annotated data. In addition, biomechanical models facilitated the DNN with the required variations in

the patient posture and physiological regression. With further development and validation on clinical

patient data, such networks have potential impact in patient and site-specific optimization, and

stream-lining clinical registration validation. © 2017 American Association of Physicists in Medicine

[https://doi.org/10.1002/mp.12321]
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1. INTRODUCTION

Adaptive radiation therapy (ART) has potential for improving

the efficacy of cancer therapy by adapting the plan to a

patient’s daily anatomy. Several recent studies have shown

that ART can provide significant dosimetric benefits for inter-

fraction anatomic variations, as well as reduced normal tissue

toxicity, in the head-and-neck,1–4 as well as other cancer

sites.5–8 ART may also allow a reduction in the error margins

added around the clinical tumor volume (CTV) to construct

the planning target volume (PTV).9 To institute online ART,

previously delivered dose must be accumulated and mapped

to the daily anatomy while the patient is on the treatment

couch, greatly shortening the time scales for registration and

validation.10 This increased manpower requirements have

inhibited full online capabilities for daily monitoring of every
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patient.10 Clinical implementations of ART remain largely

limited to offline studies and require a significant amount of

user intervention.1,11 Methods and tools to enable an online

quantification of the ART’s reliability must be developed

before implementing online ART in a clinical setup, and

forms the focus of our research.

Deformable image registration (DIR) allows image-guided

analyses of nonrigid anatomical variations.12,13 DIR has mul-

tiple applications in ART,14 including dose accumulation and

contour propagation.15 Computational speed and accuracy of

DIR is critical to quantitatively track changes in patient anat-

omy and to the overall success of plan adaptation. There

remains an unmet need for an automated quantification of

DIR accuracy that is tailor-made for the anatomy and image

modality involved. There has been much work in recent years

assessing and comparing the accuracy of commercially avail-

able DIR algorithms.16–20 However, these studies have limited

applicability for online ART as the DIR accuracy needs to be

quantified on a per-patient basis.21 The current gold standard

for obtaining clinical registration error requires comparison

between manually placed corresponding landmarks on the

source and target and calculating the difference between the

user-defined deformation and the deformation reported by the

DIR,22 commonly referred to as target registration error or

TRE. However, placing landmarks is time intensive, subject

to inter- and intra-observer variability, and suffers from small

sample size.23,24 For clinical scenarios, since the true defor-

mation remains unknown, automating the landmark assess-

ment process is not possible. Clinical DIR assessment has

also been hampered by lack of techniques to generate

ground-truth deformations that represent patient geometry

changes (posture and physiological regression) for evaluating

and quantifying DIR performance. Due to these hindrances,

formulations to quantitatively assess the accuracy of online

clinical registrations are not readily available.25

Image similarity metrics (ISMs) provide a fast method for

assessing the correlation between two image sets and outputs

a single value quantifying the similarity between intensity

fields. However, the quantification has little physical meaning

without a proper frame of reference.26 Therefore, using

image-based metrics is currently qualitative, that is, the range

of values for each ISM does not correspond directly to a

physical error measure. In 2012, Rohlfing presented an

exhaustive study of the limitations of image similarity and tis-

sue overlaps as accuracy measures for deformable image reg-

istration.27 He showed how direct application of these

measures can be deceptive, reaffirming the lack of an auto-

mated method for quantifying DIR accuracy. It was con-

cluded that the gold standard remains manually placed

landmarks, despite the low efficiency and time requirement

of the method.

A fast automated methodology for assessing registration

performance is necessary for implementation into the daily

clinical workflow.10 In addition, there is also an opportunity

to improve DIR accuracy by optimizing registration parame-

ters on a per-patient or per-registration basis28 and site-speci-

fic basis,29,30 demonstrating the need for narrow focus of

DIR to the current clinical application. Kirby et al. presented

an automated tool for evaluating DIR algorithms in general,31

but patient-specific assessment of clinical registrations

remains elusive. A fast, automated methodology for assessing

registration performance is necessary for per-patient or site-

specific registration optimization to be implemented into a

daily clinical workflow. Towards these goals, we first present

a nonlinear cost function using a combination of ISMs. The

ISM computations at this stage are fully automated and near

real-time. We then present a machine-learning approach

using deep neural networks (DNN).

The potential of a neural networks as quality evaluators for

rigid transformations during head-and-neck patient set up has

been shown previously,32,33 but such an effort has not been

investigated for deformable image registrations, which forms

the key contribution of this paper. Neural networks have

gained significant traction in recent years in a wide variety of

fields. The advantage of deep neural networks lies in their

ability to learn relationships from annotated data, without the

necessity for user intervention to design specific features or

identifiers. This is typically done using a form of stochastic

gradient descent to modify weights and biases until the net-

work output matches the expected results as closely as possi-

ble. The depth and scope of the network allows it to construct

complex relationships, and once trained, to accurately infer a

result from unlabeled input data. However, application of

neural networks in the medical arena have been predomi-

nantly focused on the field of computer aided diagnosis.34–39

Our DNN approach involved creating large correlated data

sets of model-generated synthetic CTs representing the simu-

lation CT and the subsequent daily or weekly patient imaging.

The network was then able to translate the ISM expectations

into average TRE values. This work proves that a neural net-

work approach can accurately quantify DIR performance

from image similarity values for model-generated deforma-

tions, and provides a foundation for building a neural network

to quickly and accurately assess clinical registrations.

2. METHODS

2.A. Expectations of the ISM response

The first step towards our automated registration accuracy

quantification process was to develop a nonlinear cost func-

tion which utilizes the image similarity metrics. To this end,

an initial cost function was proposed based on the expectation

that for a good registration, in addition to having a high simi-

larity between the deformed and target images, the deformed

image will be similar to the target image when both are pro-

cessed in comparison to the source image. This provides a

frame of reference to assess the result relative to the initial

similarity of the source and target. Registrations are inher-

ently image specific, and image similarity does not provide a

one-to-one correspondence to registration quality. The same

similarity may represent a poor registration for two images

that already have high similarity, and the best possible regis-

tration between two images that are very different. The

Medical Physics, 44 (8), August 2017

4127 Neylon et al.: Quantifying DIR performance with DNNs 4127



additional expectation term, comparing both deformed image

and target image to the source image, provides a method of

standardization to some degree, and allows comparisons

between registrations of varying difficulties.

In our approach, the cost function was developed around

two expectations as the registration error approaches zero.

The given image pairs are considered to be the source and tar-

get images. The warped dataset was created by applying the

deformation vector field (DVF) obtained from the DIR algo-

rithm to the source image. Similarity measures were calcu-

lated for three sets of images: source-target (IST), source-

warp (ISW), and target-warp (ITW). The expectations can then

be expressed as: [Eq. (1)] the ISM value representing the sim-

ilarity between the target and warped (or deformed) datasets

should approach 1, and [Eq. (2)] the similarity between the

source and warped datasets should approach the similarity

between the source and target datasets.

Y ¼ ITW (1)

X ¼ 1� jIST � ISW j (2)

For an ideal registration, X ? 1, and Y ? 1. The image

similarity metric chosen for testing initial response was nor-

malized mutual information (NMI), which uses the Shannon

entropy of the individual images sets, HA and HB, and their

combined entropy, HAB. Here the entropy was calculated

from the histogram of image intensities, where p(x) repre-

sents the probability of each histogram bin. The expressions

for the normalized mutual information and Shannon entropy

are shown in Eq. 3(a) and 3(b), respectively.40,41

NMI ¼
HA þ HB

HAB

� �

� 1; (3a)

with HA ¼ �
X

A
p að Þ log p ðaÞ (3b)

Equation 4 shows the proposed cost function combining

the similarity terms from Eq. (1) and Eq. (2), where m and n

are variables to be optimized, and f is a weighting factor

between 0 and 1. A systematic analysis was performed to deter-

mine the effect of the cost function variables (CFVs) (m,n,f) on

the cost function response (CFR). An inverse near-linear

relationship was expected between the ISM values and the

average ground truth TRE (gt-TRE), which is defined as the

Euclidean distance between the deformation vector calculated

by the DIR algorithm and the true deformation vector. By

adjusting the CFVs, the response curve can be manipulated.

CFR ¼ fXm � 1� fð ÞYn (4)

2.B. Establishing a predictive relationship between
the ISM cost function and TRE

Since the correlation between the ISM and the TRE is not

explicit, it can be construed that a direct correlation might not

exist for the ISM cost function and TRE. To account for this,

we developed a deep neural network model to transform the

ISM expectation values described by Eq. (1) and Eq. (2)

directly to the average TRE values. The inclusion of the sec-

ond expectation provides additional value as another input

neuron to the neural network, allowing more connections to

be established and increasing the complexity of the character-

ization.

2.B.1. Neural network construction

The neural network employed in this work is a fully con-

nected three-layer network. As inputs, the values from Eq. (1)

and (2) were calculated for the sub-volumes encompassing

four critical structures in head-and-neck radiotherapy: the pri-

mary PTV, left parotid, right parotid, and cord. The output of

the network was a vector of neural network predicted average

TRE (nn-TRE) values corresponding to the volumes encom-

passing each of these structures. The number of neurons in

the hidden layer was optimized for the best result, ultimately

settling at thirteen. A simple schematic of the network is

shown in Fig. 1.

Annotated data was split between a training set and a test

set as 25% to 75%, respectively. As the training data (further

discussed in section 2.C) was fed through the network, a ser-

ies of weights and biases were optimized to minimize a loss

function. The accuracy of the network was continually moni-

tored by inferring an output from the test data, and comparing

to the ground truth expectations. Figure 2 illustrates the flow

of data for the full network architecture. The eight input val-

ues were sent through the hidden and output layers, while the

four known expectations are sent to the loss and accuracy

functions. The result of the output layer was then sent to the

loss function, accuracy function, and training algorithm,

which updated the weights and biases of the hidden and

input hidden output

FIG. 1. A conceptual representation of a three-layer fully connected network

is shown with 8 input neurons, 13 hidden neurons, and 4 output neurons.

[Color figure can be viewed at wileyonlinelibrary.com]
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output layers and were used to compute the network accuracy

(further discussed in §2.B.3).

2.B.2. Neuron activation function

The neurons of the hidden layer took the data from each

neuron of the input layer, apply a matrix multiplication with

weighting factors, add a bias, and then apply a nonlinear acti-

vation function. Without this activation function, the network

would be comprised of a combination of linear functions,

shown in Eq. (5), where the activation of a hidden neuron, aj,

is a linear function defined by the input, z, weight, w, and

bias, b, summed over the input neurons, i. These weights and

biases are the values adjusted during training and allows the

network to learn.

aj ¼
X

i
wj;izi þ bj (5)

Converting this to a nonlinear response is important

because a composition of linear functions remains a linear

function, so the network abstraction is limited no matter its

depth. The activation function chosen for this network was

the sigmoid function [Eq. (6)].42

r að Þ ¼
1

1þ e�a
(6)

The sigmoid function is essentially a smoothed out step

function. The sigmoid function was chosen because there was

no loss of data for negative values, which is typical for other

activation functions, such as hyperbolic tangent and rectified

linear unit function. This was important because the network

outputs a physical value. Sigmoid activation has the drawback

of possibly saturating during training, but this was not much

of a concern for the size of the network being employed in

this manuscript.

2.B.3. Loss and accuracy measures

The loss function was applied during training to calculate

the error between the output of the feed-forward neural net-

work TRE inference and the gt-TRE. Since the output of the

network was intended to be a physical quantity, quadratic cost

was implemented as the loss function.42,43

Loss ¼
1

Ns

X

s
ys � asð Þ2 (7)

Where Ns is the size of the training data set, s is the indi-

vidual training data, and y was the tensor of true expected

outcomes, and a was the tensor of network outputs.

The accuracy was calculated [in Eq. (8)] as an absolute per-

cent error between the nn-TRE and the gt-TRE, with a target

of 0.1 mm accuracy. Relative percent error had little physical

meaning for instances where the gt-TRE approached zero. The

denominator of 2 [in Eq. (8)] corresponded to an expected

value of 2 mm for the gt-TRE, y. Therefore, 75% accuracy cor-

responded with a physical margin of 0.5 mm, and an accuracy

of 0% corresponded with an error of 2 mm from the actual gt-

TRE. Setting the expectation value at 2 mm matched the in-

plane resolution of the CT data being registered, which had

voxel dimensions of 1.953 mm by 1.953 mm with a slice

thickness of 3 mm. Using this measure, any value between 0

and 100% can be considered sub-voxel accuracy, approaching

0 error at 100% accuracy, and any errors greater than 2 mm

would extend into the negative region.

Accuracy ¼ 100 � 1�
jys � asj

2

� �

(8)

2.B.4. Back-propagation

In order for the network to be trained, the error from the

loss function has to alter the network to better approximate

the expected outcome. Backpropagation is a method of

retracing the network from output to input, adjust weights, w,

and biases, b, at each layer by applying their respective partial

derivatives of the loss function.44 Rumelhart et al. showed

the performance benefits of backpropagation utilizing gradi-

ent descent.45 Currently, the most widely used approach for

neural network training is stochastic gradient descent.46

Stochastic gradient descent (SGD) trains on smaller batches

of training data, called epochs. Within an epoch, the training

batch is iterated through several times, randomly choosing

data points to estimate the gradient. An adaptive sub-gradient

method, with dynamic learning rates was employed for net-

work training.47

FIG. 2. A graph visualization of data flow for the network used in this manu-

script is shown, constructed using the TensorBoard graph visualization tool

provided in the TensorFlow library.
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2.C. Generating ground truth data

Training data is critical in enabling the deep neural net-

work to precisely predict the nn-TRE for given values of the

ISM. The key requirement for such a training data is to have

a large number of voxels with known ground truth TRE val-

ues. Generating such a large data using clinical datasets is a

tedious task as most manual DIR validations consider 300

landmarks or more. To address this issue, we employed a

biomechanical model to generate automated ground truth

TRE values as further described below.

2.C.1. Simulated CTs with known DVFs from

biomechanical modeling

In previous work, a framework was developed with the

ability to instantiate an interactive biomechanical model

from a patient CT.48 These models were used to induce

posture changes and physiological regression to simulate

day-to-day changes in patient anatomy and create clinically

realistic ground truth deformation vector fields for the pur-

pose of clinical DIR validation. The model was validated

to reproduce clinically observed deformations, including

posture changes and tumor regression, with a correlation

coefficient greater than 0.9. Figure 3 illustrates through

volume renderings the systematically induced deformations

achieved using the biomechanical model, including tumor

regression and rotations of the head. These deformations

reasonably simulated clinically observed changes to patient

anatomy and provide a reasonable testing dataset for the

automated DIR assessment methodology. The framework

outputs a simulated CT of the deformed anatomy and a

fully volumetric DVF so the motion of each voxel was

known.

2.C.2. Dense registration parameter space/TRE

correspondence

An in-house multi-level, multi-resolution optical flow

DIR algorithm was employed for these experiments.49 The

registration algorithm had four adjustable parameters: (a)

the smoothing factor, (b) the number of resolution levels,

(c) the number of iterations, and (d) the number warps.

Registrations were performed for a systematic sampling of

this four-dimensional registration parameter space. Table I

displays the sampling rate for each variable and the total

number of registration performed. A total of 2400 DIR

computations were performed between the source-target

dataset to create the dense parameter space data set. The

induced deformation of the target image for this data set

consisted of 15° rotations about each axis, and 25% regres-

sion in the primary tumor contour. This was a much larger

change in anatomy than typically observed clinically, but

was chosen to accentuate the differences For each registra-

tion, a deformed image volume was created from the DIR

DVF, the gt-TRE calculated, and similarity analysis was

run between the three sets of image pairs.

Additionally, annotated data was generated for a variety of

anatomies by inducing 45 different postures with the biome-

chanical model, systematically rotating the head about the

three primary axes. At each posture, six levels of regression

were applied to the primary tumor target, creating a total of

270 target volumes with known deformations. Registrations

were run between the source and each of these target volumes

for five different smoothing parameters, and the gt-TRE was

recorded by randomly and automatically selecting 100 land-

marks within each structure of interest and comparing the

DIR DVF with the known model DVF. Table II describes the

composition of this multi-pose anatomy data set.

2.C.3. Sub-volume/site specific assessments

Analyzing the similarity of CT images of the head-and-

neck at a full volumetric level can diminish the effectiveness

due to the high percentage of empty space, and the lack of

deformation in areas such as the brain. Therefore, analysis

was also performed on sub-volumes of the data. These sub-

volumes were automatically generated with respect to the

extents of the contoured structures of interest for radiotherapy

purposes, including the right and left parotid glands, and the

tumor targets.

2.D. Development environment

The biomechanical model, registration algorithm, and

image similarity analysis tools were developed in a Linux

environment, using C/C++ and accelerated with NVIDIA’s

CUDA library to run on graphics processing units (GPUs).

Neural network development was done in python, using the

Google’s open source library for machine intelligence, Ten-

sorFlow, accelerated for GPU with the CUDA deep neural

network library, cuDNN.

3. RESULTS

In this section, we first present the correlation between the

ISM cost function and the ground truth TRE. This illustrates

the lack of an explicit correlation between the two metrics,

supporting the need for a deep learning based approach. We

then discuss the results obtained from the DNN correlation

between the ISM cost function and the ground truth TRE. As

part of this effort, we first present the results for variations in

the DIR parameters. It is followed by a discussion on the

DNN accuracy for variations in the patient posture and physi-

ological changes.

3.A. Cost function response versus target
registration error

Figure 4 shows the full 4D parameter space stretched over

the x-axis, with plots of the gt-TRE and CFR in the primary

and secondary y-axes, respectively, for the PTV1 volume.

Within each level subdivision in the figure, there are 8 peaks

corresponding to the varying number of iterations. The
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smooth curves between peaks correspond to the sampling of

the smoothing parameter. As expected, there was an observ-

able inverse correlation. While it appears that the moving

average of the CFR increased in concordance with the mov-

ing average of the gt-TRE decreasing, the actual correlation

between the data was just �0.4675 for the cost function vari-

ables used to generate the data in Fig. 4. When plotted

against each other, shown in Fig. 5, we observed that the cost

function was able to establish a general trend of decreasing

response for larger TRE values, but the lack of a one-to-one

correspondence suggest the cost function was not sophisti-

cated enough to capture the full relationship between TRE

and image similarity metrics.

To investigate the CFR correlation, a systematic evaluation

of the cost function variables (CFV) was performed. Our

results show that the CFR showed strong dependence on the

CFV. For the data in Figs. 4 and 5, the weighting factor, f, was

set to 0.5, and the exponents, m and n, were set as 2 and 0.5,

respectively. This CFV set will be referred to as the reference

CFV from this point on. Figure 6 shows how the CFR varied

for different sets of CFV. The data presented comes from the

sub-volume surrounding the right parotid gland. For the right

parotid, a high correlation was found (�0.92) by adjusting the

CFV, but resulted in poor correlation for the other sites being

examined. We found that no matter how the CFV were modi-

fied, a consistently good correlation across all sites with a
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FIG. 3. Renderings of a patient-specific biomechanical model for a variety of posture and volume change combinations. [Color figure can be viewed at wileyonli-

nelibrary.com]
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single CFV set was not achieved. This reinforced the assertion

that the relationship was too complex for the proposed cost

function, and motivated our investigation of a neural network

approach, the results of which are now discussed.

3.B. Neural network results

The results of the cost function experiments indicated that

a more complex representation was necessary to fully

characterize the relationship between the ISM expectation

terms, X and Y, as described by Eq. 1 and 2. A neural network

was developed which took as inputs these ISM expectation

terms and would infer a target registration error (nn-TRE) as

an output. In this section, the results for the neural network

are presented, where manually adjusted variables are elimi-

nated and replaced with a framework for learning from anno-

tated training data.

3.B.1. Training on the dense parameter space data

set

The first experiment with the neural network re-examined

the dense parameter space data set, which consisted of 2400

registrations between a single sets of volumetric images. By

systematically varying the registration parameters, subtle dif-

ferences were induced in the DVF, spanning the quality spec-

trum of registrations. The details of this experiment was

discussed in §2.C.2.

From the 2400 samples in the dense parameter space data

set, 25% (600) were chosen randomly as the training data.

TABLE II. Composition of annotated training data for systematic variations in head posture and tumor regression levels. Additionally, the smoothing parameter of

the DIR algorithm was varied to create a total of 1350 registrations for the multi-pose anatomy data set.

Levels of regression Postures Registration smoothing Annotated data sets

Instances 6 45 5 1350

Range 0:30% x-rotation y-rotation z-rotation 50:1000
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Cost Function Response v. Ground-Truth Target Registration Error 

PTV1: Dense Parameter Space Data Set

PTV1 TRE PTV1 TRE: Moving AVG PTV1 CFR PTV1 CFR: Moving AVG

1 Warp 2 Warps 3 Warps

1 Level 2 Levels 3 Levels 4 Levels 5 Levels 1 Level 2 Levels 3 Levels 4 Levels 5 Levels 1 Level 2 Levels 3 Levels 4 Levels 5 Levels

FIG. 4. Comparison of TRE and CFR over the entire dense parameter space data set for the PTV1 contour, with moving averages for a window size of 20 sam-

ples. Four registration parameters were systematically sampled. Number of warps comprised the outermost loop, followed by number of levels, iterations, and

smoothing value. The plot shows delineations of how the 4D parameter space was plotted in 1D along the x-axis for the warps and levels. An inverse correlation

can be observed between TRE and CFR throughout the entire registration parameter space. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Sampling frequency for each parameter of the 4D registration

parameter space. A total of 2400 registrations were performed between a sin-

gle source-target image set to create the dense parameter space data set.

Registration parameter Range Instances

Warps 1:3 3

Levels 1:5 5

Iterations 50:500 8

Smoothing 10:1000 20

Total registrations 2400
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The network was trained in batches of 75 samples over 1000

epochs, such that every 8 epochs, all 600 training data had

been iterated through. After training, the entire data set was

fed through the network. The network reached 88% accuracy

on the test data, which consisted of 75% of the dense parame-

ter space data set. The results are shown in Fig. 7, along with

the difference in millimeters between the predicted TRE and

the true TRE. The network was able to predict the TRE to

within 1 mm for the entire registration parameter space,

excluding the purposely poor registrations performed using

only 1 warp, 1 level, and less than 100 iterations. The mean

accuracy for the PTV1 was just under 86%, corresponding to

a mean discrepancy less than 0.3 mm. The correlation

between the nn-TRE and gt-TRE matched or exceeded the

best performance from manual optimization of the cost func-

tion for each of the four contours examined, shown in

Table III.

Figure 8 plots the nn-TRE with respect to the gt-TRE, in

comparison to Fig. 4, showing much better correspondence

with a tight grouping along the linear trend-line. Results

show the neural network can accurately predict the TRE for a

large range of registration parameter combinations and the

resultant range in registration quality. This shows potential

for automated registration optimization, with the level of

specificity (patient, site) determined by the annotated training

data. These experiments indicated the neural network could

be trained to identify the best set of registration parameters

for a single deformation.

3.B.2. Training on the multi-pose anatomy data set

The next experiment was developed to test whether the

neural network could be trained to predict the registration

error for a variety of different anatomies that could be seen

from day-to-day in the clinic. The multi-pose anatomy data

set consisted of 45 different postures, and applied six levels

of tumor regression at each posture, providing a good repre-

sentation of possible anatomies that could be seen from day

to day in the clinic. Registrations were performed for five
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in figure 8.1. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 6. Correlation between target registration error (TRE) and cost function response (CFR) for three sets of cost function variables (CFV) using the full regis-

tration parameter space data, illustrating the high variability of response observed by adjusting the CFV. [Color figure can be viewed at wileyonlinelibrary.com]
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different smoothing values ranging from 50 to 1000 for each

posture. The smoothing variable dictated the scope of local

continuity for the deformation vector field. The other regis-

tration parameters were set to constant values that are reason-

able for clinical registrations. Therefore, the multi-pose

anatomy data set consisted of clinically realistic day-to-day

anatomies, with relatively small deformations, where DIR

performance was expected to be good. For each pose, only

subtle differences were expected between registrations based

on the different smoothing parameters.

The architecture of the neural network remained the same

for both experiments. The network was trained on 25% of the

multi-pose anatomy data set, and achieved over 95% accuracy

on the test data. The results for the PTV1 contour are shown

in Fig. 9. It is apparent from the figure that the registrations

as a whole were much better than the registrations in the

dense parameter space data set, with the moving average of

the gt-TRE ranging from 0.6 and 1.3 mm. However, there

was still a large amount of variation between registrations,

and the neural network was able to accurately reproduce the

high frequency fluctuations with an average error of less than

0.1 mm. The only instance of significant deviation between
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TABLE III. Correlation with ground-truth TRE for cost function response

before and after optimizing the cost function variables, and for the neural net-

work predicted TRE, trained on 25% of the Dense Parameter Space data set.

CFR v. gt-TRE

nn-TRE v. gt-TREReference CFV Best CFV

PTV1 �0.467 �0.649 0.950

Left parotid �0.921 �0.952 0.988

Right parotid �0.860 �0.958 0.952

R² = 0.903
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dense parameter space data set. [Color figure can be viewed at wileyonlineli-

brary.com]
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the nn-TRE and the gt-TRE was for the case of no deforma-

tion seen in the middle of the 0% regression block. The cor-

relation between the nn-TRE and gt-TRE for the multi-pose

anatomy data set was 0.889 for the PTV1, 0.95 for the right

parotid, and 0.945 for the left parotid.

This experiment was repeated for nine additional patients

with comparable accuracy. A multi-pose anatomy data set

was generated for each of the ten patients, which was then

used to train a patient-specific neural network. Table IV dis-

plays the overall accuracy of the nn-TRE for each of the ten

patients, as well as the correlation between the nn-TRE and

gt-TRE for the parotid glands and PTV of each patient. The

average accuracy of all ten patients was greater than 90%,

with correlations over 0.95 for each parotid and over 0.9 for

the PTV. These results support the hypothesis that a neural

network can reliably infer TRE from only image similarity

information for patient-specific scenarios, when properly

trained using annotated data. The considerations for size and

scope of the training data, as well as the potential avenues for

incorporating a neural network are addressed in the discus-

sion.

4. DISCUSSION

The work presented in this paper discusses the feasibility

of an automated, quantitative estimation of DIR accuracy for

clinical radiotherapy using synthetic data generated from a

biomechanical model. Conventionally, TRE calculations have

used manually placed landmarks as the gold standard for DIR

accuracy measurements, but this landmark-based approach is

inapplicable for online ART because of its inherent time

complexity and inter-observer variations. Image similarity

metrics can be calculated in real-time but are limited by their

lack of correspondence to physical units. We hypothesized

that a nonlinear relationship between the ISM expectations

and the TRE can be modeled using a neural network based

approach.

4.A. Summary of contributions

Through supervised training of deep neural networks on

large patient-specific, model-generated data sets, we inferred

an estimated DIR TRE from computed ISMs. Once trained,

the network requires only image similarity information in

order to provide a robust, quantified confidence measure of

DIR performance in near real-time. For reasonable registra-

tions applied to a variety of possible daily deformations, the

network achieved greater than 95% accuracy when compar-

ing its inferred TRE to ground-truth TRE. The key compo-

nents of this method are (a) the development of the ISM

expectation equations, (b) the deep learning framework that

translates the ISM values to physical distance metric, and (c)
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the generation of clinically realistic ground-truth deformation

suites for training patient-specific neural networks.

4.B. Transitioning from proof-of-concept to clinical
implementation

While the results presented in this study are promising and

highlight the versatility and potential of a neural network

based approach to DIR performance assessment, there

remains much work to do before clinical implementation.

The biomechanically induced deformations of a patient are

generated from a single source CT, so the resultant synthetic

CTs have similar image characteristics. Assessing a registra-

tion of clinical data using a DNN trained only on model-gen-

erated deformation data would likely result in a loss of

accuracy in the nn-TRE. As discussed below in Section C,

network performance is completely dependent on the anno-

tated training data. Therefore, to implement such a method

clinically, the training data would need to be expanded. To

what extent is a difficult question that requires systematic

study. Section E discusses future work and how we intend to

move towards clinical implementation.

4.C. Dependence on annotated training data

While neural networks appear to have great potential for

fast, quantitative estimates of DIR performance, they are

completely dependent on the accuracy and reliability of their

annotated training data. The role of biomechanical head and

neck models as a key source of training data is critical in

enabling such deep neural networks to be instantiated. Using

a model, it would be feasible to generate a suite of postures

like the multi-pose anatomy data set, for each patient in the

clinic. Generating the suite of different postures, and running

the registrations to produce the annotated TRE data took

approximately one full day using a GPU-based biomechani-

cal model and a fast optical flow deformable image registra-

tion algorithm. Network training over 1000 epochs took only

a couple minutes. Once trained, the network inferred an esti-

mated TRE almost instantaneously, once the image similarity

had been calculated.

4.D. Flexibility of the neural network approach

While the network training relies heavily on the model-

generated annotated data, it should be noted that this neural

network approach is independent of the biomechanical model

used in this study. Any model with the capability to repro-

duce clinically observed deformations could provide anno-

tated training data, and improvements to biomechanical

modeling in general should easily be incorporated in the

future.

Similarly, the normalized mutual information image simi-

larity metric could be replaced or combined with any number

of other similarity metrics. Although the accuracy and effec-

tiveness of those similarity metrics is yet undetermined.

Lastly, the deformable image registration algorithm is also

interchangeable. As evidenced by the work of Kirby et al.,29

there is a need in radiation therapy for task or application

specific registration algorithms. This neural network method

could be employed to test and compare DIR algorithms for

patient-specific registration tasks, and help ensure the proper

algorithm was applied.

4.E. Future work

Future work would focus on using ISMs directly for DIR

to enable the DIR’s parameter space optimization. While the

role of such a parameter space optimization has been demon-

strated using TRE [50], the formulation presented in this

paper enables the usage of the optimization for scenarios

where the TREs are not typically available. This manuscript

focused on quantifying the expected error in the deformable

image registration, but a similar methodology could be

applied for registration optimization. This again delves into

the pre-determination of how and when the neural network

should be employed. It may be possible to train a network to

choose the best combination of registration parameters based

on image similarity analysis of the source and target images.

Once registered, a second network would give a quantified

confidence of the registration performance. Alternatively, the

network predicted TRE could be incorporated into a feedback

loop with the registration algorithm for task or site-specific

optimization.

Contour specific results were calculated in this manuscript

by analyzing the sub-volumes encompassing structures of

interest. This provided more information than a single mea-

sure of similarity between the entire 3D data volumes, and

limited focus to the areas of greatest importance. Future work

will investigate the calculation of a volumetric image similar-

ity using a moving window throughout the entire 3D image

set, similar to the application of a convolution filter. Greater

weight can still be given to contours of interest, while deliver-

ing more detailed information. Coupled with a neural net-

work, this could produce a volumetric measure of the DIR

TABLE IV. Summarized results of neural network performance trained on

multi-pose anatomy data sets generated from 10 patients.

Patient

Accuracy Correlation

% mm Left parotid Right parotid PTV

1 94.76 0.022 0.9452 0.9399 0.8924

2 82.43 0.249 0.9266 0.9214 0.9017

3 93.66 0.032 0.9654 0.9588 0.8986

4 94.28 0.022 0.9500 0.9571 0.8421

5 95.38 0.019 0.9862 0.9745 0.9740

6 95.25 0.021 0.9847 0.9504 0.9566

7 86.50 0.227 0.9560 0.9486 0.9526

8 86.91 0.134 0.9442 0.9401 0.9472

9 92.55 0.054 0.9568 0.9562 0.9015

10 91.61 0.057 0.9751 0.9722 0.7474

Average 91.33 0.084 0.9590 0.9519 0.9014
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confidence, able to be viewed as a heat map and identify

problem areas or to adapt the registration to the clinical task.

Additionally, this could lead to adaptive registration parame-

ters such as heterogeneous smoothing values, which will be

investigated separately.

Within the context of further developing the deep neural

networks, future investigation will focus on determining how

broad of a scope the deep neural network can have while

maintaining accuracy. We focused on analyzing a limited

number of critical structures for head-and-neck radiotherapy.

Any increase in scope would bring an accompanying require-

ment for more training data and additional network complex-

ity in the form of more hidden layers or more neurons per

layer. Similarly, training individual networks for each struc-

ture may improve network results and decrease the amount of

training data required. Determining where and how to apply

such networks should be an intense area of research, as their

applications are wide-ranging and largely unexplored. The

inhibiting factor will most likely remain the time and effort

required to compile the annotated training data, which further

highlights how a fast, versatile, and accurate biomechanical

model can be an invaluable resource.

6. CONCLUSION

The machine learning based approach described in this

manuscript has the potential to overcome the time and labor

hindrances of quantitative DIR error assessment, establish a

connection between image similarity to registration error, and

provide a fast, automated avenue for clinical DIR validation,

which would then facilitate accurate dose accumulation and

re-planning, thereby enabling online ART.
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