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ABSTRACT 

Breast radiation therapy is typically delivered to the patient in either supine or prone position. Each of these 
positioning systems has its limitations in terms of tumor localization, dose to the surrounding normal structures, and 
patient comfort. We envision developing a pneumatically controlled breast immobilization device that will enable 
the benefits of both supine and prone positioning. In this paper, we present a physics-based breast deformable model 
that aids in both the design of the breast immobilization device as well as a control module for the device during 
every day positioning. The model geometry is generated from a subject’s CT scan acquired during the treatment 
planning stage. A GPU based deformable model is then generated for the breast. A mass-spring-damper approach is 
then employed for the deformable model, with the spring modeled to represent a hyperelastic tissue behavior. Each 
voxel of the CT scan is then associated with a mass element, which gives the model its high resolution nature. The 
subject specific elasticity is then estimated from a CT scan in prone position. Our results show that the model can 
deform at >60 deformations per second, which satisfies the real-time requirement for robotic positioning. The model 
interacts with a computer designed immobilization device to position the breast and tumor anatomy in a 
reproducible location. The design of the immobilization device was also systematically varied based on the breast 
geometry, tumor location, elasticity distribution and the reproducibility of the desired tumor location. 
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1. INTRODUCTION

Breast cancer patients typically receive a breast conserving procedure of surgically resecting the gross tumor with 
margin (lumpectomy), or a more extensive area of tumor surrounding breast tissue plus chest muscle lining (partial 
mastectomy). In these breast-conserving procedures, to sterilize possible stray cancer cells, post-surgical 
radiotherapy on the whole breast or partial breast (the surgical bed and involved lymph nodes) is typically 
administered[1]. While this treatment approach has achieved tremendous success in reducing tumor recurrence, 
there is substantial risk of treatment-related toxicity in the healthy tissues surrounding the breast anatomy. The soft 
and deforming breast anatomy results in an unstable shape and position[2]. For partial breast treatment to the 
surgical bed, the uncertainty increases the required geometrical margins during radiotherapy treatment planning and 
the subsequent normal breast tissue gets exposed to higher radiation doses[3].  

1.1. Supine positioning  

When patients are in the typical supine orientation (Figure 1(a)), the breast is weighed down by the gravity and 
spreads to have a large contact area with the chest wall. A considerable amount of underlying normal anatomies 
including heart, lung and skin in the infra-mammary folds are thus exposed to a high radiation dose leading to 
significant radiation side-effects (dermatitis, fibrosis, fat necrosis and lung radiation pneumonitis and a significant 
risk for cardiac problems). The breast shape in the supine orientation, by itself, is problematic for radiation planning 
as radiation hot spots (tissues receiving doses greater than the prescription dose) are often unavoidable and further 
worsens the side effects. Reducing treatment related toxicity for both the breast anatomy as well as its surrounding 
thoracic organs is critical to improve radiotherapy treatment outcomes[4, 5]. 
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Methods that alleviate treatment related toxicity have focused on modulating patient orientation. Specifically, prone 
patient orientation on a breast couch with a “drop-in cut-out” allows gravity to move the breast away from the 
patient (Figure 1(b)). This set up significantly reduces the lung and chest wall doses and result in less severe hot 
spots inside the breast[1]. However, prone set-up results in a descending heart position that increases cardiac doses 
in some patients. Setting up the patient in a prone orientation is also more difficult, leading to a poorer 
reproducibility as compared to a supine orientation. Many patients cannot tolerate prone position for the typical 
treatment duration. Furthermore, lymph node coverage is more difficult in the prone orientation. 

(a) (b) 

1.3. Breast immobilization 

Achieving ideal breast geometry (similar to prone orientation) for treating the tumor in a supine orientation using an 
effective robotic assistance forms the focus of this proposal. Such a robotic assistance must incorporate the benefits 
of both the supine orientation and provide active immobilization system engineering with materials that will not 
increase the skin irradiation. A soft robotics based design addresses the aforementioned problems by using a thin 
and light material and providing a soft robot-breast interface so that the patient can comfortably tolerate the 
manipulation. We envision a soft robotics based system for developing a breast immobilization device for precise 
breast tumor targeting while minimizing dose to the cardiac region. Specifically, the robotic system consists of 
multiple dough-nut shaped pneumatically inflatable chambers that when placed around the breast anatomy can be 
inflated to immobilize the breast during radiotherapy. We envision a high-resolution physics-based breast model as a 
control module for the proposed robotic system, which forms the focus of this paper.  A key knowledge gap exists in 
the application of soft robotics for positioning such delicate and deformable anatomies. Addressing this knowledge 
gap forms the technical focus of this paper. 

1.4. Biomechanical modeling and elasticity 

Sophisticated biomechanical models have been developed for individual anatomical sites, including the head and 
neck[6], the hand[7, 8], lungs[9], and the leg[10]. Physics-based methods, such as finite element and mass-spring, 
allow for a broad array of simulations. Models are typically generalized and limited in focus to specific sites and 
types of motion or interaction due to computational complexity. The time for highly complicated simulations can 
take minutes to hours on a CPU. A framework was developed to generate patient-specific, GPU-based 
biomechanical models using a mass-spring-damper system where each mass represents a voxel from a patient CT 
scan for the purpose of validating clinical non-rigid registrations by creating ground truth deformations[11]. The 
linear elastic physics of the model ran entirely on GPU in a multi-level algorithm. With this methodology, 
interactive speeds (>30 fps) were achieved on a single GPU for approximately 1.5 million mass elements with over 
25 million connections. The soft tissue response was accurate with an R2 value of > 0.98 when compared to ground-
truth global and local force deformation analysis. For a clinically relevant range of posture and physiological 
changes, the model deformations stabilized with an uncertainty of less than 0.01 mm.  

Historically, soft tissues have been modeled using linear elastic properties for simplicity and speed, as was the initial 
development of the model described above. This is a reasonable approximation for small deformations, such as the 
limited day to day variations caused by weight loss, tumor regression, or small posture changes. However, the 
differences in the breast anatomy between the supine and prone positioning results in much larger deformations. 
Most biological tissues exhibit a hyper-elastic response [12, 13], meaning they are virtually incompressible but able 

1.2. Prone positioning  

Figure 1. Volume renderings of supine (a) and prone (b) CTs of the same patient demonstrating significant differences in 
breast anatomy due to posture and the desired separation of the breast from the chest wall achieved in prone orientation. 
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to undergo large elastic deformations. Maintaining an interactive framerate for a hyper-elastic material model 
implementation is much more difficult than a linear Hookean model[14] due to the complex system of non-linear 
equations that must be solved for each frame.  

2. METHODS

2.1. Forward deformation computation 

The model consisted of a GPU based biomechanical soft-tissue model with each voxel being associated with a mass 
(referred to as mass elements) and connected by mesh lattice. The model elements are isotropically spaced and 
interconnected by a set of visco-elastic springs to form a high-resolution biomechanical breast model. The elastic 
properties of the connections were assigned according to values reported in literature from previous elastography 
studies[15-18]. The model was initially developed using linear elasticity, described by the stress/strain relationship 
of Hooke’s law[19], as in equation 2 where σ is the stress tensor, ε is the strain tensor, and S is stiffness matrix 
defined by Lamé’s parameters,  ߪ௜௝ = ௜ܵ௝௞௟ߝ௞௟  . (1) 

Hyper-elasticity was formulated by deriving a strain-energy function from the deformation gradient tensor, F, ܨ௜௝ = 	 డ௫೔డ௑ೕ . (2) 

Where X represents the reference state of a component, and x represents the deformed state. This can be rewritten as 
the product of a rotation matrix R and a rotationally independent deformation tensor U or V, ࡲ = ࡾ ∙ ࢁ = ࢂ ∙  (3) . 	ࡾ

The stretch tensors and deformation gradient tensor can easily be calculated from the known state of the model by 
analyzing the local deformation around each element using the nearest neighbor connections. The right Cauchy-
Green deformation tensor can then be directly derived, ܥ௜௝ =  ௞௝ . (4)ܨ௞௜ܨ

The principal stretches, ߣ௜, can be found by solving for the real roots polynomial relating the stretch invariants, ܫ௜஼, 
of the Cauchy-Green deformation tensor. The stretch invariants are defined as follows, ܫଵ஼ = ௜௜ܥ = ଶ஼ܫ (5a) , (ܥ)ݎݐ = ଵଶ ൫ܥ௜௜ܥ௝௝ + ଷ஼ܫ ௝௜൯ , (5b)ܥ௜௝ܥ = ߳௜௝௞ܥ௜ଵܥ௜ଶܥ௜ଷ = det	(ܥ) , (5c) ߣଷ−	ߣଶܫଵ஼ + ଶ஼ܫߣ ଷ஼ܫ	− = 0 . (5d) 

Hyper-elasticity was implemented using a generalized Ogden material model, which defines the strain energy, W, in 
terms of the principal stretches, λi, and the shear modulus, [20] ߤ. The principal stretches can be found by solving for 
the eigenvectors of the deformation tensor (U or V). The Ogden model allows experimentation with a variety of 
strain-energy functions by adjusting the parameters N and ߙ, such as Neo-Hookean (N = 1, 2 = ߙ)[21] and Mooney-
Rivlin (N = 2, 2- = 2ߙ ,2 = 1ߙ)[23 ,22], according to assumptions such as incompressibility, to simplify the strain 
energy function, ܹ = ∑ ఓ೛ఈ೛ே௣ୀଵ ൫ߣଵఈ೛ + ଶఈ೛ߣ + ଷఈ೛ߣ − 3൯ , ߤ2 (6) = 	∑ ௣ே௣ୀଵߙ௣ߤ  . (7) 
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After applying a polar decomposition to the strain energy function, it can be rewritten as a combination of a 
deviatoric and hydrostatic term, fp, separating out the volumetric work of the deformed state, ܹ = ෩ܹ + ௣݂ = ∑ ఓ೛ఈ೛ே௣ୀଵ ൫ߣሚଵఈ೛ + ሚଶఈ೛ߣ + ሚଷఈ೛ߣ − 3൯ + ௣݂ , ሚ௜ߣ (8) =  ଵ/଺ . (9)ି(ଷ஼ܫ)௜ߣ

The principal Cauchy stresses, ߪ௜, can be found from the 2nd Piola-Kirchoff stress tensor, τ, which is derived from 
the partial derivative of the strain energy function with respect to the principal stretches[24, 25]. The hydrostatic 
pressure term, ௣݂, disappears under the assumption of incompressibility typically applied for biological tissues, 

௜ߪ = ௜߬௜ߣ = ௜ߣ2 డௐ෩డఒ೔ = ∑ ௜ఈ೛ே௣ୀଵߣ௣ߤ  . (10) 

From the principal Cauchy stress at each element, the internal force vectors, റ݂௔, can be computed[26], and the new 
positions, ݔറ௔௡ାଵ, and velocities, ݒറ௔௡ାଵ, of the mass elements updated from the values (ݔറ௔௡, ݒറ௔௡) at the previous iteration 
n, using Implicit (Backward) Euler integration. 

റ௔௡ݒ = റ௔௡ݒ +	ቀ ௙റೌ௠ೌ + റ݃ቁ റ௔௡ݔ (a.11) , ߜ = റ௔௡ݔ , ߜറ௔௡෪ݒ	+ (11.b) 

where ߜ was the time step between iterations, ݉௔ was the mass of mass element a, and റ݃ was acceleration due to 
gravity. To improve robustness and stability, at a compromise with performance, the trapezium rule was applied to 
the implicit integration scheme according to Heun’s method[27, 28]. Thus, the velocity and position were calculated 
using the above methodology but applying a time update of ߜ 2ൗ . The intermediate internal force vectors were re-
calculated according to this intermediate deformation state to allow compensation. Finally, the model was updated 
by equally weighting the two components. 

2.2. Surface triangulation 

Particle-particle interactions can be unstable for prolonged contact forces such as the surface interactions between an 
immobilization device and breast model. Therefore, a triangulated surface was constructed to encase the breast 
model. Surface triangulation remains an active area of research, with many algorithms to convert point cloud 
information to polygonal faces. These include marching cubes[29], marching triangles[30], the ball-pivoting 
algorithm[31], and Poisson reconstruction[32]. Concepts were adapted and modified from these surface 
reconstruction algorithms to utilize the established connections from our meshing algorithm to facilitate surface 
triangulation. 

The meshing algorithm employed during instantiation of the model produces isotropic connections about each 
element. Surface elements were identified by summing the normalized directional vectors of all connections 
belonging to each element, and dividing by the maximum number of possible connections. For any element with less 
than the maximum number of connections, the magnitude of this summed directionality vector would be greater than 
zero. A threshold can adjust the sensitivity of the surface element identification to the number of missing 
connections. 

Once all surface elements were identified, a list of possible edges were created by finding all existing connections 
between surface elements. These edges were then iterated through and concatenated to find triplets of edges with 
matching vertices. A series of conditions were imposed to optimize the generation of triangles, and account for the 
irregular geometry of patient anatomy which may not be entirely convex. This included prioritizing edges that 
already belonged to a single triangle face, disallowing the addition of new edges to the open edge list, tests based on 
the principles of the ball-pivoting algorithm[31] and vector algebra test to prevent overlapping of triangle faces. The 
ball-pivoting algorithm test finds the sphere that would sit on each vertex of the proposed triangle face, with the 
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sphere’s center in the direction of the triangle normal. By testing that no other vertices reside within this sphere, it 
ensures that faces are truly on the surface and not cutting corners. However, this has limitations when applied to 
non-convex objects, which are common when considering anatomical structures. Therefore, an additional loop 
wrapped the triangle search algorithm, toggling different criteria to fill gaps when the algorithm stalls. 

2.3. Biomechanical breast model as a control mechanism 

A mechanism was implemented to anchor a selected portion of the breast model to a simulated ‘chest wall’. A 
wireframe sphere was rendered in the deformation space, giving user control to the radius and center of the sphere, 
such that any elements of the breast model that fell within the volume of the sphere were anchored and immovable. 
This effectively replaced the patient torso, simplifying the simulation and providing the user with control of the 
anchoring of the breast model, as well as a mechanism for introducing slight posture changes such as roll, pitch, and 
yaw by simply rotating the wireframe sphere.  

To simulate deformations, we applied the gravity as a uniform force on each of the soft breast tissue element in a 
series of slightly different orientations to approximate day-to-day posture changes that may be seen clinically. In 
addition, volume conserving anatomical deformations forms a critical role in facilitating a precise biomechanical 
deformation. Incorporating volume conservation, from a biomechanical perspective, refers to the fact that the breast 
tissue undergoes minimal volume change when the subject’s posture changes from supine to prone. From the 
triangulated surface of the object, the volume can be estimated by summing over the surface triangles[33]. A 
constraint force based on the Jacobian distribution can then be incorporated to preserve the volume as the model 
integrates positions. 

3. RESULTS

3.1. Forward deformation and elasticity 

Figure 2(a) displays a representative model of the breast, where the static chest wall anchor is black and the 
deformable breast tissue is blue. Figures 2(b) and 2(c) show the deformation due to gravity for two orientations. This 
simplistic representation was able to reasonably reproduce observed behavior of breast anatomy due to gravity after 
optimizing the elastic values throughout the volume. In validation of the elasticity estimation methodology, 
convergence occurred when the estimated displacement was within 1 mm of the ground-truth displacement for each 
voxel. Our analysis shows that an accuracy of 98% was achieved in reconstructing ground-truth elasticity 
distributions.  

(a) (b) (c) 

3.2. Surface triangulation 

Figure 3 shows the progression of the model instantiation in four stages. Figure 3(a) displays the representative 
breast volume after the individual elements had been localized in the deformation space. Figure 3(b) displays the 
results of the meshing algorithm. Here each element is shown as a white point, while the connections are color 

Figure 2. A 3D deformable model of the breast is shown (a). The breast anatomy is represented in blue while the rib-cage 
wall is shown in black. The deformation of the model under gravity is shown for the two orientations in (b) and (c), 
respectively, with the color map representing the local deformation. 
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coded to correspond to the spherical element representations in figure 3(a). Figure 3(c) shows the result of the 
surface element identification. All elements are shown as black points, but the surface elements have their normal 
vectors emanating from them and color coded to correspond with the colors of the spherical elements of figure 3(a). 
Finally, figure 3(d) shows the final triangulated surface for the volume. Elements are shown again as black points, 
while each triangle face was rendered with vertices color coded to match figure 3(a). Additionally, the normal for 
each triangle face are rendered as white lines, originating from the center of the circle inscribed within its parent 
triangle.  

(a) (b) (c) (d)
Figure 3. An example of the progression from a collection of elements (a), to the fully connected mesh (b), to the identified 
surface elements and their associated normals (c), and finally the watertight triangulated surface (d). 

3.3. Initializing patient data and simulating the chest wall anchor 

Figure 4 shows the creating of a patient specific breast model. Figure 4(a) shows the full patient anatomy loaded 
from a supine CT. The anatomy was divided between the right breast, the skeletal anatomy, and general soft tissues. 
The full anatomy model consisted of more than 750,000 elements. Each structure has a bounding box that indicates 
possible interactions. Figure 4(b) removes the general soft tissues, displaying only the breast and the skeletal 
anatomy. Figure 4(c) additionally removes the skeletal anatomy, leaving only the breast tissue model. The breast 
alone contributed just over 36,000 elements with over 400,000 connections between them. Of the 36,000 elements in 
the breast model, 9600 were identified as surface elements with 59,000 possible edges between them, resulting in 
over 13,500 surface triangles. In figure 4(d), the torso was replaced with a wireframe sphere. All elements within the 
radius of the wireframe sphere are considered anchored to the sphere, and are shown as black in the image. In figure 
4(e), a simple immobilization device consisting of three pneumatic tori, where both inner and outer radii can be 
adjusted to lift and separate the breast away from the simulated chest wall. This immobilization model is discussed 
in more detail in the following section. The model described in figure 4 performed at approximately 68 frames per 
second using a hyper-elastic material model and improved Euler integration on a single GPU. For comparison, a 
linear elastic material model with implicit Euler integration ran at approximately 78 frames per second for the same 
breast model. 

(a) (b) (c) (d) (e)

The replacement of the actual patient torso with a wireframe sphere simplifies the simulation and facilitates the 
testing for a spectrum of subtle posture changes, such as those that may be seen clinically from day to day. Changes 
to the roll, pitch, and yaw of the anatomy can be simulated by simple rotations about the center of the sphere. Figure 

Figure 4. The instantiation and extraction of a patient specific breast model is displayed. (a) show the full patient anatomy 
from a supine CT. (b) removes general soft tissues, displaying the skeletal anatomy and breast model. (c) displays just the 
breast model. (d) introduces a wireframe sphere to represent the patient torso and provide a chest wall anchor for the breast 
model. (e) shows how a possible immobilization device could be rendered and applied to the breast model. 
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5 illustrates this effect, displaying the differences in breast anatomy due to gravity from these small posture changes. 
This provides a platform for testing the immobilization device’s ability to provide consistent reproducible geometry, 
despite the highly variable nature of the anatomy. 

(a) (b) (c) (d) (e)

3.4. Manipulating breast anatomy with a simulated immobilization device 

Figure 6(a) shows the initial breast and upper thoracic structure and its non-rigid interaction between a pneumatic 
multi-compartment rigid model is shown in figures 6(b) and 6(c). The 3D deformable anatomy is color-coded to 
represent the stress and strain on each finite element (green-blue representing compression and green-red 
representing extension). Such local variations in the deformable structure’s stress points to the need for such a 
deformable breast model in order to minimize any patient discomfort during positioning. The GPU implementation 
was able to maintain an interactive frame rate (>30 fps) when manipulating the rigid immobilization device, for a 
model with over 1 million total elements and approximately 65,000 within breast anatomy region of interest. 

(a) (b) (c) 

4. DISCUSSION AND CONCLUSION

The key breakthrough presented in this work is the capability for instantiation and interactive manipulation of 
patient-specific hyper-elastic breast models, which provides a platform to design and test novel breast 
immobilization devices with realistic and accurate breast tissue response, and the ability to perform systematic 
evaluation of the device’s reliability and reproducibility for immobilizing the breast and localizing the tumor target 
for external beam radiotherapy on actual clinical patient data. There remains ample room for further development of 
the model. Two avenues for future work are presented below. 

Figure 5. Illustrating subtle posture changes by introducing roll, pitch, and yaw with the wireframe sphere chest wall 
anchor. (a) shows the initial breast posture from the supine CT data, with the wireframe sphere anchoring the chest wall. 
(b) shows an ipsilateral roll, and (c) shows a contralateral roll. (d) and (e) show pitches in the caudal and cranial directions, 
respectively. 

Figure 6. Biomechanical simulation of pneumatic soft-robotics based breast positioning. (a) shows the breast anatomy and 
the robotic system before being pneumatically inflated. (b) and (c) shows a biomechanical simulation of the pneumatic air 
inflation and the corresponding breast deformation. 
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A key step in developing biomechanical breast models for robotic breast immobilization is to develop a well-
validated model elasticity reconstruction. The elastic values assigned to the breast tissue for the reported simulation 
in this work were taken from literature, and manually adjusted by qualitative observation. However, a methodology 
for patient-specific elasticity estimations has been developed by employing an inverse analysis to prone-supine CT 
imaging pairs[34]. This work applied a modified Gauss-Newton methodology [35, 36] to optimize a heterogeneous 
elastic distribution within a breast. The elastic distribution was initialized using the intensity information from the 
CT to choose an estimated starting point. The optimization scheme minimized the displacement error when applying 
gravity to one of a prone-supine CT imaging pair, and allowing the model to deform to match the other posture. 

A systematic validation of the elasticity reconstruction methodology was accomplished by utilizing the 
biomechanical simulation to represent a breast in the prone position with a spherical tumor located within the tissue. 
During the validation procedure, a ground-truth biomechanical model was developed with the spherical tumors 
being assigned with elasticity values from the literature to represent ductal carcinoma’s in-situ, invasive ductal 
carcinomas (IDC), and fibro-adenomas and positioned with different sizes throughout the breast tissue. The 
Euclidean distance between ݔറ௔௡ and ݔറ௔௡ାଵ for each mass element was taken to be the ground-truth displacement for 
that mass element, and then the biomechanical model was reset with an initial guess elastic distribution. The 
iterative binary search optimization scheme was utilized until convergence occurred. 

This elasticity estimation methodology employed the linear elastic material model version of the biomechanical 
breast model for the forward deformation portion of their optimization scheme. Future work will aim to incorporate 
the hyper-elastic material model into this optimization to utilize patient-specific elasticity distributions. This should 
theoretically improve the accuracy of the breast tissue response when manipulated by a virtual immobilization 
device. 

4.2. Moving toward a multi-GPU (mGPU) implementation 

Simplifications were applied to the breast model to maintain interactive frame rates for the increased computational 
complexity of the hyper-elastic material model. These included volumetric simulations of the only the breast 
anatomy, while replacing the patient torso with a wireframe sphere to model anchoring of the breast to the chest 
wall. The linear elastic material model was already limited in size by memory capacity of a single GPU, and in 
speed by the number of processors. Expanding the model to utilize the computational power of a mPGU framework 
hurdles the previous limitations of the linear material model, and should allow interactive response when simulating 
a full anatomical model generated from clinical patient data. To our knowledge, this would be the first work to 
demonstrate a mGPU framework for deforming a high-resolution, patient-specific, volumetric biomechanical model 
employing hyper-elastic tissue response at interactive speeds.

Moving toward a mGPU implementation, the model will be divided into a system of particle systems: each 
contoured structure will be a self-contained independent particle system. For the breast model, there was only a 
single structure of interest, so the others were removed to simplify the simulation and optimize performance to run 
on a single GPU. For future work, the workload will be distributed with one GPU to calculate the external impulses 
and structure-structure collisions, while the internal hyper-elastic tissue responses of the individual structures are 
farmed out to other GPUs as needed. By compartmentalizing the model as a system of smaller particle systems, 
solving for the internal corrective forces and applied constraints will become smaller independent computations. 
Additionally, the bony anatomy is considered static, and no elastic connections will be established within them, 
reducing memory requirements. From this intelligent distribution of the computational effort, we intend to remove 
the simplifications made to the presented breast model, until we have a fully-functional, interactive, patient-specific 
model generated from clinical patient imaging. With each structure as an independent system with a triangulated 
surface, interactions between structures will also need to consider system level, rigid body kinematics such as center 
of mass position, momentum, and orientation, with additional limitations and constraints to describe unique structure 
interactions. 

4.1. Estimating patient-specific elasticity distributions 
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In this paper, we presented a biomechanical breast model for designing and developing a novel soft robotics breast 
immobilization device. The breast model was developed from patient-specific CT imaging obtained during the 
treatment planning stage. The breast elasticity can be estimated in a patient-specific manner using an additional CT 
imaging in the prone posture. An iterative methodology to estimate elasticity by matching the observed deformation 
between supine and prone imaging has shown good initial results, achieving accuracy of 98% within 1 mm for 
simulated breast deformations under gravity.  

These models can aid in the development of a robotic immobilization device to lift and separate the breast tissue 
away from the chest wall during external beam radiotherapy treatments to spare exposure of normal tissues. Using 
the model framework, a virtual robotic system could be tested on an arbitrary number of actual patient data sets to 
refine its physical design and functional abilities before prototype construction, saving both time and money in 
research and development. Proposed robotic designs could be loaded into the simulation through volumetric imaging 
data, or surface definition such as point-cloud vertex lists. The simple soft robotic system presented above for 
illustration consisted of a stack of tori, the size of which could be controlled by the user. It would be feasible to 
allow the user to alter the device construction during simulation. Additionally, for future clinical incorporation of the 
proposed robotic system, patient-specific models will allow planning for positioning, orientation, and other 
adjustments of the immobilization device prior to patient treatment. 

To conclude, we believe patient-specific biomechanical models can be a valuable resource for the development, 
validation, and implementation of robotic interventional technology in the clinic. A platform providing realistic, 
interactive tissue response simulations can accelerate development by facilitating faster design iterations without the 
requirement for a physical manufacturing. We also expect that further development will expand the possible 
applications for such models. 
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