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Purpose: Breast elastography is a critical tool for improving the targeted radiotherapy treatment

of breast tumors. Current breast radiotherapy imaging protocols only involve prone and supine

CT scans. There is a lack of knowledge on the quantitative accuracy with which breast elasticity

can be systematically measured using only prone and supine CT datasets. The purpose of this

paper is to describe a quantitative elasticity estimation technique for breast anatomy using only

these supine/prone patient postures. Using biomechanical, high-resolution breast geometry obtained

from CT scans, a systematic assessment was performed in order to determine the feasibility of this

methodology for clinically relevant elasticity distributions.

Methods: A model-guided inverse analysis approach is presented in this paper. A graphics processing

unit (GPU)-based linear elastic biomechanical model was employed as a forward model for the

inverse analysis with the breast geometry in a prone position. The elasticity estimation was performed

using a gradient-based iterative optimization scheme and a fast-simulated annealing (FSA) algorithm.

Numerical studies were conducted to systematically analyze the feasibility of elasticity estimation.

For simulating gravity-induced breast deformation, the breast geometry was anchored at its base,

resembling the chest-wall/breast tissue interface. Ground-truth elasticity distributions were assigned

to the model, representing tumor presence within breast tissue. Model geometry resolution was varied

to estimate its influence on convergence of the system. A priori information was approximated and

utilized to record the effect on time and accuracy of convergence. The role of the FSA process was also

recorded. A novel error metric that combined elasticity and displacement error was used to quantify

the systematic feasibility study. For the authors’ purposes, convergence was set to be obtained when

each voxel of tissue was within 1 mm of ground-truth deformation.

Results: The authors’ analyses showed that a ∼97% model convergence was systematically observed

with no-a priori information. Varying the model geometry resolution showed no significant accuracy

improvements. The GPU-based forward model enabled the inverse analysis to be completed within

10–70 min. Using a priori information about the underlying anatomy, the computation time decreased

by as much as 50%, while accuracy improved from 96.81% to 98.26%. The use of FSA was observed

to allow the iterative estimation methodology to converge more precisely.

Conclusions: By utilizing a forward iterative approach to solve the inverse elasticity problem,

this work indicates the feasibility and potential of the fast reconstruction of breast tissue elas-

ticity using supine/prone patient postures. C 2016 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.4941745]
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1. INTRODUCTION

Breast cancer is the most commonly diagnosed cancer for

women in the United States, with about one in eight U.S.

women developing invasive breast cancer over the course

of her lifetime.1 The general approach to early stage breast

cancer treatment usually involves a lumpectomy, followed by

postoperative radiotherapy, which significantly reduces the

risk of cancer recurrence. Postoperative breast radiotherapy

can be challenging because of the deformable nature of the

breast tissue. Day-to-day changes in breast anatomy and

positioning present an obstacle when trying to attain an

ideal and repeatable patient setup. It has been previously

documented that the breast alignment can vary by more than

5 mm in any dimension from one day to another without

the use of immobilization devices.2 Existing immobilization

devices designed for rigid anatomies are not suitable for

fixing the breast position. Engineering novel immobilization

devices for precise and reproducible breast setup require

modeling of the breast deformation for given forces applied

to the breast surface.3 Therefore, the first step in engineering

such immobilization devices is a systematic development of

subject-specific biomechanical breast models.

High-resolution biomechanical physics-based models have

been used to develop patient-specific representations of

deforming anatomy.4 Sophisticated biomechanical models can
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simulate deformations and physiological changes in different

anatomies, creating a dynamic physical atlas.5 It is necessary

that these models be patient-specific in order to use material

properties of soft tissue to correctly predict outcomes and

response to radiation therapy, calculate mechanical defor-

mation of surrounding tissue caused by tumor growth, and

accurately model tissue movement during radiation therapy

treatments.6–8 Biomechanical models of the breast have also

been used to more precisely locate cancerous tissue and

simulate breast shape during a variety of clinical applications.2

Biomechanical models must take into consideration the laws

governing the mechanical properties of tissue—elastography

is a noninvasive way to image the physical distribution of

these properties.9 Elastography techniques focus on mapping

the elastic properties of soft tissue into a spatial distribution

and have previously been used for modeling anatomic sites

such as the breast and prostate.10 Knowing the distribution

of elastic properties throughout soft tissue can lead to design

and development of immobilization devices in addition to

yielding valuable biomechanical information in a patient-

specific manner.

Elastography imaging techniques have been previously

investigated by peers for differentiating benign from malignant

disease, possibly reducing the overall number of breast

biopsies.11–13 These methods generally assess tissue and lesion

stiffness by perturbing the tissue, measuring the internal tissue

displacements, and inferring a spatial distribution of mechan-

ical properties from the measured mechanical response.14–16

Popular elastography imaging techniques include shear wave

elastography, where the speed of a shear wave throughout

tissue provides a quantitative measure of lesion stiffness,

and freehand elastography, where a handheld transducer is

used to axially compress the tissue a few millimeters.17

Both ultrasound- and MR-based implementations of these

techniques have been shown as feasible ways to identify

and characterize cancerous tumors in soft tissues, as malig-

nant lesions exhibit considerably higher elasticity than the

surrounding parenchymal tissue.11,18,19

A critical limitation in performing breast elastography

within a radiotherapy setting is that the clinical breast

radiotherapy protocols only involve prone and supine CT

scans.20 With additional MR and ultrasound imaging being

unattainable within a clinical radiotherapy workflow, it is

important to study the feasibility and accuracy of deriving

breast tissue mechanical properties based on the two CT

scans.

The focus of this paper is to formulate a methodology for

performing breast elastography with subject-specific clinical

supine/prone CT data, and to systematically validate and

quantify the accuracy of this methodology. A linear elastic

biomechanical model, which has been previously used for

representing head and neck deformations,5 will be employed

as a deformation model to represent the breast anatomy. Each

mass element of the model denotes a single voxel from the

supine or prone CT image data. The underlying elasticity

is then estimated using a gradient descent binary search

algorithm coupled with a fast-simulated annealing (FSA)

based model parameter optimization.

2. MATERIALS AND METHODS

The primary aim of this study was to formulate a method

to estimate the Young’s moduli (YM) associated with each

voxel in the breast anatomy and to quantitatively assess

the accuracy of the estimated values using virtual breast

phantoms. From a mathematical perspective, reconstructing

the elasticity distribution of tissue can be approached in either

a direct or an inverse manner. The direct approach reconstructs

an elastographic image by converting the strain value at

each voxel to a relative Young’s modulus using a simple

model constraint, such as Hooke’s law.21 This approach is

limited, however, and has been shown to be inferior when

compared to the inverse approach.22 The inverse approach,

or model-based method, is an iterative approach that allows

for more reasonable and realistic model constraints. Peers

have formulated the inverse elasticity problem as a parameter

optimization problem with an objective to minimize the

difference between measured displacement and that computed

by a biomechanical model representing observed mechanical

behavior.19

In our approach, we formulated breast elastography as an

inverse problem. The supine-to-prone breast deformation is

known to be gravity-induced.23,24 We used the observed tissue

displacement between supine/prone postures as our measured

ground-truth displacement. A biomechanical simulation was

employed as the forward deformation model to evaluate the

inverse breast elasticity problem, with its parameters being

iteratively updated. It has been shown in Ref. 5 that the

deformation of the biomechanical model acted upon by gravity

matches the expected soft-tissue response, indicating its

potential for modeling the supine-to-prone breast deformation.

Implementation of this model in a graphics processing unit

(GPU) environment allowed for fast and accurate breast tissue

elasticity estimations.

In this section, we first present the GPU-based forward

deformation model that was devised to represent the breast

anatomy. We then present the inverse formulation that was

used to estimate the breast tissue elasticity. Finally, we present

our experiments in systematically assessing the accuracy of

the estimated tissue elasticity.

2.A. Forward problem

While the forward problem is previously discussed in

Ref. 5, for clarity, we hereby present the model.

2.A.1. Model initialization and geometry

The biomechanical model was constructed from clinically

acquired or virtually constructed CT data. We defined defor-

mation space as the virtual space where the model geometry

can be instantiated and deformed. The model geometry was

represented by mass elements corresponding to the center of

each voxel of anatomy in the CT image. Mass elements were

connected by mass-spring damping (MSD) connections in the

deformation space. Connecting the mass elements with each

other using a spring damper formulation ensured that the mass
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elements could deform in a physically realistic manner. The

connections were established as follows: A local neighbor-

hood search was performed in a parallelized manner around

each mass element to find nearby elements. When a nearby

element was within a threshold distance (determined by the

voxel size of the input CT, approximately 3 mm in our case)

from the search element, a MSD connection was established

and the nearby element became a connected element for

the given search element. The rest length and orientation of

each connection were then recorded and assigned a Young’s

modulus and a Poisson’s ratio as the final step in the model

initialization.

2.A.2. Forward deformation computation

The corrective forces on each mass element were calculated

as a summation of tensile force, shear force, and a dashpot

damping force. At rest state, the elastic internal corrective

forces were set to zero. When deformed, the model’s mass

elements were relocated to new positions inside the deforma-

tion space, which caused the internal corrective forces to be

nonzero. For each mass element, a, the tensile force,
⇀

f Y,ab,

shear force,
⇀

f S,ab, and the dashpot damping force,
⇀

f
v,ab, were

calculated for each connected element, b, and summed to find

internal corrective force,
⇀

f a,

⇀

f a =


b

(

⇀

f Y,b+
⇀

f S,b+
⇀

f
v,b

)

. (1)
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where δ was the time step between iterations, ma was the mass

of mass element a, and
⇀
g was the acceleration due to gravity.

The Euclidean distance between
⇀
x
n

a
and

⇀
x
n+1
a

for each mass

element was taken to be the ground-truth displacement for that

mass element, and then the biomechanical model was reset

with an initial guess elastic distribution. The iterative binary

search optimization scheme was utilized until convergence

occurred. The initial guess distributions and iterative binary

search optimization schemes are further discussed in Secs.

2.B and 2.C.

2.B. Inverse analysis

Solving the inverse elasticity problem was accomplished by

iteratively deforming the model from rest state, as described in

Sec. 2.A.2. A gradient-based binary search (further discussed

in Sec. 2.B.1) was used as an iterative optimization scheme

to update the spatial-elastic distribution in order to mini-

mize the discrepancy between ground-truth and computed

mechanical response, or displacement, for each voxel, while

a fast-simulated annealing algorithm was simultaneously

employed to optimize model parameters (further discussed in

Sec. 2.C.4).

2.B.1. Iterative elasticity estimation

The iterative scheme for recovering the Young’s modulus

distribution was derived from the relationship between

Young’s modulus and displacement.25 An elastic solid can

be viewed as a series of mass elements connected by a grid

of ideal linear elastic connections, where the elastic modulus

acts on each mass element similarly to a material constant.

Likewise, the resulting displacement can be related to the

stiffness of the material,

FE[i]= E[i]
∆L[i]

L[i]
, (4)

where FE is the elastic force upon mass element i, E is the

elastic modulus, ∆L is the change in length of the connections

connected to mass element i, and L is the initial length of the

connections for mass element i. This equation illustrates that

the elastic modulus and displacement are inversely related—

if elastic modulus increases then displacement must decrease

and vice versa. This principle defines the reasoning behind the

iterative process for estimating elasticity.

The general basis of our reconstruction technique is

to minimize the difference between the ground-truth and

calculated displacements. Given an initial Young’s modulus,

the biomechanical model will provide theoretical estimates of

mass element displacements. These displacements are then

compared with the ground-truth displacement vectors and

Young’s modulus is iteratively updated until convergence

is achieved. Intermittent mass element displacement values

are generated on a per voxel basis by updating the Young’s

modulus (E) values as follows:

(a) Initialize values of E[i], Emin[i], and Emax[i].

(b) Compute the displacement residual vector ∆d[i] by

subtracting the calculated displacements from the

ground-truth displacement at each voxel.

(c) Update Emin[i] and Emax[i]:

(i) If ∆d[i]> 0, Emin[i]= E[i] and Emax[i]= Emax[i],

(ii) If ∆d[i]< 0, Emin[i]= Emin[i] and Emax[i]= E[i].

(d) Estimate next values of E using E[i + 1] = (Emin[i]

+Emax[i])/2.

(e) Repeat steps (b)–(d) until a suitable stopping criterion

has been reached.

This iterative procedure is based upon the modified Gauss–

Newton method,26,27 which was chosen because it requires no

assumption about the homogeneity of the tissue in question,

the implementation is straightforward, and the convergence

occurs within O(log n) iterations. For our purposes, the

range of Young’s modulus values is given by Emin[i] < E[i]

< Emax[i], where Emin[i] and Emax[i] are typically 1 and

200 kPa for living soft tissues.27,28 Convergence was obtained

when each voxel of tissue was within 1 mm of the ground-truth

deformation.
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F. 1. Flow chart depicting fast-simulated annealing process.

2.B.2. Fast-simulated annealing

Besides elasticity, another parameter of the biomechanical

model that needs to be optimized is the number of iterations

for the biomechanical model. Iteration number refers to

the deformation time for each iteration of the simulation.

This is important because deformation time greatly impacts

whether the system reaches an equilibrium state or whether the

system is still in transition when the displacement values are

recorded.

FSA was chosen to optimize iteration number because even

in the presence of noisy data, it may not find the optimum

solution, but it will find a very good solution very quickly.

The FSA algorithm generates randomized iteration number

candidates and checks if this candidate solution is better than

the current solution. If so, the current solution is replaced

with the candidate solution, but if not, the current solution

is replaced with a given probability. This allows us to accept

iteration numbers that are not ideal in order to explore more

of the possible solution space. The probability decreases with

a logarithmic temperature scheme until the system converges

or a set computation time has been exhausted. The lowered

temperature limits the number of nonideal iteration numbers

that are accepted so that the solution is allowed to approach

the global minimum. A flow chart describing the FSA process

is shown in Fig. 1.

2.C. Numerical analysis

To enable a systematic study of the inverse analysis process,

the biomechanical model was employed to generate a hemi-

spherical geometry representing a breast in order to simulate

the ground-truth displacement vectors. The hemispherical

geometry was approximated from a volume rendered patient

CT image of a breast in the prone position [Fig. 2(a)]. The

chest-wall/breast tissue attachment interface is mimicked by

anchoring the base of the hemisphere to prevent motion

in the top layer of mass elements, which is illustrated in

Fig. 2(b).

2.C.1. Virtual breast phantoms

Two different hemispherical geometries were constructed

with 1 mm3 voxels to represent different model resolutions.

The lower resolution simulation contained 100 000 voxels and

had a 64 voxel diameter, while the higher resolution model

contained about 600 000 voxels with a 128 voxel diameter.

A homogeneous elastic modulus distribution of 20 kPa was

initially used to represent a mixture of fatty and glandular

breast tissue.22 Spherical inhomogeneities with diameters of

5, 10, and 15 mm were placed within the geometry.29 These

spherical masses, representing breast tumors within the tissue,

were used to signify ductal carcinomas in situ (DCIS), invasive

ductal carcinomas (IDC), and fibroadenomas, with elasticity

values of 75, 90, and 110 kPa, respectively, as derived from

the literature and shown in Table I.30 The breast geometry was

divided into quadrants and for each distribution, a tumor was

placed either in the center of the hemisphere or the center of

one of the quadrants. Combining the different types, sizes, and

locations of tumors along with the different image resolutions

resulted in 90 different ground-truth elasticity distributions.

The biomechanical breast model was deformed in turn with

each of these ground-truth elasticity distributions, with the

resulting ground-truth displacements calculated as explained

above.

F. 2. Volume renderings of prone DICOM CT (a) and biomechanical simulation with anchored base of a 128-voxel diameter hemisphere to mimic chest-wall

interface (b).
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T I. Elasticity values for different components of breast tissue found from the literature (Ref. 26).

Breast tissue type

Fatty/glandular

tissue (kPa)

Fibrous tissue

(kPa)

Ductal carcinoma

in situ (kPa)

Invasive ductal

carcinoma (kPa)

Tissue elastic modulus 20 110 75 90

2.C.2. Inverse analysis with no a priori information

After the ground-truth deformation was recorded, the

estimated elasticity was reset to an initial guess elasticity

distribution. Primarily, the elasticity was reset to a homoge-

neous initial guess in which no assumptions were made about

the anatomy in question. This initial guess was used in order to

investigate the robustness of our methodology by showing that

the system could converge regardless of the disparity between

the initial guess and the ground-truth elastic distribution. The

time and accuracy of the convergence for each ground-truth

distribution were recorded and analyzed.

2.C.3. Inverse analysis with a priori information

We then performed the same study using a priori infor-

mation, which would be gained from the HU values obtained

from the supine/prone CT images. For the purposes of our

feasibility study, HU values were simulated and assigned

to each voxel with values from the literature depending on

whether the voxel represented normal fibroglandular tissue or

was a part of one of our simulated spherical tumors.31 These

HU values were input into our simulation, and if the HU

value for a voxel was above a certain threshold, that voxel

was assigned a higher initial elastic modulus. It is expected

that, using the a priori information, we can more precisely

define the boundary of a tumor and decrease the computation

time.

2.C.4. Fast-simulated annealing

A FSA algorithm is used to optimize iteration number

while the binary search to optimize elasticity is performed

simultaneously, which is illustrated in Fig. 3. To ascertain

whether the fast-simulated annealing obtained an optimum

F. 3. Illustration of the simultaneous binary search and FSA algorithms.

The red lines indicate that a FSA jump was performed, where the binary

search process is illustrated by the points (see color online version).

solution, displacements were recorded for a random sample

of the ground-truth elasticity distributions, and then the

simulation attempted to recreate the ground-truth elasticity

distributions both with and without the FSA optimization. For

scenarios, when the FSA algorithm was not employed, the

iteration number was set to 4000, which was the ground-truth

iteration number. The accuracy of the FSA algorithm is further

explored in Sec. 3.C.

2.C.5. Error metric

The metric used for quantifying the accuracy of the inverse

analysis was a combination of both the estimated elasticity and

the displacement error produced using the estimated elasticity.

Higher elasticity values of the tumor voxels represent stiffer

connections, so a small error in the elastic moduli did not

as greatly increase the displacement error when compared to

the more elastic interactions with the normal tissue voxels.

To determine whether or not our elasticity accuracy will

translate to the required clinical accuracy, we deformed the

synthetic phantoms and plotted the maximum displacement

versus elasticity for hemispheres with different homogeneous

elastic moduli distributions, and fit a curve to the plotted

points, which is shown in Fig. 4. The resulting equation

is

d � 16.11−0.231 297 ∗ E+0.001 122 46 ∗ E2, (5)

which fit the data with an R2 value of 0.996. Using this

equation, we concluded that a displacement differential of

∆1 mm (or submillimeter clinical accuracy) corresponds

to an elasticity differential of ∆0.5 kPa for voxels with

elastic moduli falling somewhere in the normal tissue range

(around 15–25 kPa). Similarly, a displacement differential of

F. 4. Displacement versus Young’s modulus fitted plot.
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∆1 mm corresponds to an elasticity differential of ∆3 kPa

for voxels with higher elasticity values in the tumor range

(around 70–100 kPa). The values of 0.5 and 3 kPa were

approximated to 1 and 5 kPa for more robust binning and

were used to bin the elasticity differentials between estimated

and ground-truth elasticity distributions for the purposes of

our study.

The results can then be given in terms of both elasticity

accuracy and displacement accuracy. Elasticity error was

derived by using a L1 norm (subtracting the resulting elasticity

distribution from the ground-truth elasticity distribution),

binning the elasticity error into 1 and 5 kPa bins, and calculat-

ing the percentage of mass elements that fell in each bin. We

calculated displacement accuracy by subtracting the resultant

displacement of each mass element from the ground-truth

displacement, and focusing on the results with submillimeter

accuracy. Other elastography estimation methods, such as

combined ultrasound and FE models, strive for displacement

error that is less than the smallest tumor diameter that can be

found in breast tissue, which is around 3 mm.32 For a direct

comparison, the displacement accuracy that is less than 3 mm

is also presented for individual cases in Sec. 3.

Besides looking at the results averaged over all of the

distributions, we present the three other criteria that were

also investigated: (a) relation between the use of a priori

information and accuracy, (b) relation between the image

resolution geometry and the accuracy, and (c) effectiveness

of the FSA algorithm. A two-sample t-test was performed to

analyze whether the statistical significance of the differences

in the means of each population for each of the three criteria

listed above. Volume renderings of the resultant and ground-

truth elasticity distributions were also used to visually analyze

the results as an addendum to the numerical results. The

results gleaned from the systematic study are presented in

Sec. 3.

3. RESULTS

In this section, we present the results obtained from the

systematic study. To illustrate the aptitude of the forward

model for representing gravity-induced soft-tissue deforma-

tions, the biomechanical simulation was used to establish

geometry from a prone breast DICOM CT [(a) and (b)] with a

homogeneous elasticity distribution. This geometry was then

deformed with gravity to simulate the supine orientation [(c)

and (d)], illustrating that the model can accurately represent

the soft-tissue deformation between prone and supine breast

postures. Figure 5 shows DICOM CT [(a) and (c)] and

biomechanically simulated [(b) and (d)] prone and supine

breast positions. Figure 5(e) shows an overlay of images (c)

and (d). ImageJ was used to perform an image comparison

and the images were shown to be 85.23% similar. The

mismatch between the two images, highlighted in yellow,

can be explained by segmentation errors, as the breast was

manually segmented from the DICOM CT images, and

intensity differences between the DICOM CT and the mass

elements in the biomechanical simulation.

3.A. Model resolution

To analyze the impact of the breast model resolution

on the estimated elasticity, the simulation was performed

with two different resolutions of hemispheres, as mentioned

in Sec. 2.C.1. The lower resolution, 64 voxel diameter

hemisphere converged on average with 98.87% of the voxels

within 1 mm of the ground-truth results. This corresponded

to 92.02% of voxels being within 1 kPa of their ground-

truth elasticity values, and 96.92% of voxels converging

within a 5 kPa window. The higher resolution, 128 voxel

diameter hemisphere converged on average with 96.19% of

the voxels within 1 mm of the ground-truth displacement,

resulting in 86.15% of voxels converging within a 1 kPa

elasticity window and 98.38% converging within 5 kPa. These

results are summarized in Table II. A two-sample t-test of

20 different images shows that the differences between the

results of the lower and higher resolution datasets were not

significant (P > 0.05). Though the average elasticity error for

the 1 kPa bins in each instance seems to be dissimilar, the t-test

considers a one-to-one correspondence between the values in

the samples. For example, the elasticity error of every ground-

truth elasticity distribution is compared between the lower and

higher resolution cases.

Because a multitude of distributions were considered, the

differences between the average values were not significant.

This implies that regardless of image resolution, we can

produce results with similar accuracy, which is paramount

to implementation in the clinical setting. More specifically,

Table III shows examples of the results of lower and higher

resolution datasets for a large fibroid in the center, a small

IDC in quadrant II, and a medium DCIS in quadrant

IV. These results again illustrate that for multiple tumor

locations, regardless of tumor type or size, both the low

and high-resolution reconstructions produce similar elasticity

distribution. Figure 6 shows volume renderings of a medium

IDC located in quadrant II for both the low-resolution (a) and

the high-resolution (b) hemispheres. Both cases are visually

and numerically similar—the boundary between the differing

elasticity values is well-differentiated for both low- and high-

resolutions. The inverse elasticity algorithm is invariant to

image resolution, further indicating that image resolution will

not hinder the accuracy of our reconstruction.

3.B. A priori information

Two different initial guess distributions of elasticity values

were investigated. The first required no a priori information

about the underlying anatomy—the initial guess was set to

a homogeneous elasticity value of 10 kPa. In the second

case, a priori information was developed to be indicative

of representative HU values that would come from the

prone/supine CT scans taken in the clinic. Each ground-truth

elasticity distribution was investigated starting with both types

of initial guess. Table II shows the results averaged over every

distribution both with and without the a priori initial guess.

It can be seen that the a priori information increased the

elasticity and displacement accuracy overall. Table IV shows a
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F. 5. Prone DICOM CT (a) and biomechanically simulated (b) data. Supine DICOM CT (c) and biomechanically simulated (d) data. The biomechanical

simulation shown in (b) and (d) was generated from the DICOM CT images which had a resolution of 134×144. (c) and (d) were overlaid in (e) to give a direct

comparison of our simulation to the DICOM CT (see color online version).

further breakdown of these results in terms of image resolution

along with the average time.

Average time decreased appreciably, especially for the

higher resolution hemisphere with 128 voxel diameter where

the average time decreased by about 30 min. Overall, both

accuracy and computation time improved notably between

simulations run with the homogeneous initial guess and the

a priori initial guess, which is also illustrated in Fig. 7 for a

random selection of ground-truth distributions. Figure 8 shows

volume renderings of the ground-truth elasticity distribution

(a), the resultant elasticity distribution when no a priori

information was considered (b), and the resultant elasticity

distribution when a priori information was used to form an

initial guess (c) for a large IDC in quadrant I. Visually, it can
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T II. Overall results and results for simulations run with and without a priori information, with and without

the FSA algorithm, and with lower and higher resolutions.

Elasticity window Displacement error

Overall results ±1 kPa (%) ±5 kPa (%) <1 mm (%)

87.60±3.18 97.15±4.73 96.81±3.62

Averages ±1 kPa (%) ±5 kPa (%) <1 mm (%)

Mean of datasets without a priori 87.60±4.42 97.15±1.26 96.81±3.62

Mean of datasets with a priori 90.57±3.23 98.15±2.52 98.26±2.82

Averages ±1 kPa (%) ±5 kPa (%) <1 mm (%)

Mean of datasets without FSA 96.57±2.38 98.75±0.78 98.78±1.01

Mean of datasets with FSA 96.40±1.14 97.88±1.31 97.48±1.72

Averages ±1 kPa (%) ±5 kPa (%) <1 mm (%)

Mean of datasets with lower resolution 92.02±3.48 96.92±1.32 98.87±0.65

Mean of datasets with higher resolution 86.15±4.10 98.38±2.41 96.19±1.87

be seen that Fig. 8(c) more closely matches the ground-truth

distribution, without the distortion along the chest-wall and

boundary distortions seen in Fig. 8(b). When the a priori

information was not utilized, as in Fig. 8(b), the magnitude

discrepancies and edge distortions are clear, which both agrees

with, and thus strengthens, our numerical results. Table V

shows excerpts of the individual results for a large IDC in

quadrant II, a small fibroid in quadrant I, and a medium DCIS

in quadrant III.

These results are selected to illustrate that regardless

of tumor type, location, or size, the addition of a priori

information significantly improves the results. This is further

illustrated when considering the statistical significance of

the average accuracy values. When a priori information

was used to form an initial guess, the average displacement

accuracy for the lower and higher resolution hemispheres

increased, respectively, from 94.94% and 98.67% to 97.44%

and 99.07%. A two-sample t-test between 20 different

distributions confirmed that the improvements resulting from

the use of a priori information were significant (P < 0.05).

These results suggest that taking advantage of a priori HU

data obtained from the clinical CT scans can reduce the

convergence time of our simulation while improving the

accuracy of the resulting elastic distribution.

3.C. Fast-simulated annealing

For ground-truth displacement distributions, the ground-

truth elasticity distribution was prescribed as described in

Sec. 2.C.1, and the ground-truth iteration number was set

to 4000 iteration steps to allow the breast simulation adequate

time to deform. The ground-truth iteration number was set to

4000 to allow the breast simulation adequate time to deform.

The deformation of the particles was recorded for multiple

iteration numbers, and at an iteration number of 4000, the

maximum deformation increased by less than 0.01 mm, or

1% of our convergence criteria, indicating that the simulation

had reached a state of equilibrium within 4000 iteration steps.

The FSA algorithm returned an average iteration number

value of 2960± 590 iteration steps. The small discrepancy

between this result and the ground-truth iteration number

occurs because the combination of iterative binary search

and the FSA algorithm allows for multiple solutions. More

relevant is the resulting displacement and elasticity accuracy

for the simulation run both with and without the FSA

algorithm. Table II lists the resulting estimations of average

elasticity and displacement accuracy for the distributions

computed both with and without the FSA algorithm. The

submillimeter convergence percentage of each instance (i.e.,

T III. Example 64 and 128 voxel (lower and higher resolutions) test cases for a large fibroid in the center of

the hemisphere, a small IDC in quadrant II, and a medium DCIS in quadrant IV.

Elasticity window Displacement error

Large fibroid center ±1 kPa (%) ±5 kPa (%) <1 mm (%) <3 mm (%)

Lower resolution 88.25 96.36 94.98 100.00

Higher resolution 80.42 98.45 89.95 100.00

Small IDC quadrant II ±1 kPa (%) ±5 kPa (%) <1 mm (%) <3 mm (%)

Lower resolution 85.28 98.85 96.58 100.00

Higher resolution 86.91 98.12 94.92 100.00

Medium DCIS quadrant IV ±1 kPa (%) ±5 kPa (%) <1 mm (%) <3 mm (%)

Lower resolution 74.86 99.31 99.83 100.00

Higher resolution 75.89 99.22 99.19 100.00
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F. 6. Volume rendered comparison of a medium IDC in quadrant II within the (a) lower and (b) higher resolution hemispheres.

with and without FSA) was observed to be 97.45% and

98.78%, respectively. A two-sample t-test of 20 different

distributions indicated that the difference between the mean

values of each population was not significant (P > 0.05);

therefore, use of the FSA algorithm allowed the iterative

estimation process to converge correctly without reducing

the integrity of the results. Figure 9 shows volume rendered

elasticity distributions of the ground-truth (a) and estimated

distributions with and without use of the FSA algorithm

for a large IDC located in the center of the hemisphere

[(b) and (c)]. It can be seen that both instances [(b) and

(c)] result in a very similar volume rendering, where the

location of the IDC is located accurately with some small

discrepancies around the boundary of the tumor. From the

numerical and visual results, we can conclude that use of the

FSA algorithm allows our simulation to converge correctly.

This will allow for us to more easily transition to clinical

data—we will not have any preconceived notions of iteration

number, yet we can still expect our simulation to determine

accurate results. Comparing Figs. 8(b) and 9(b), it can be seen

that elasticity was reconstructed with similar discrepancies in

each case, indicating that tumor location does not obstruct

our elasticity reconstruction. The use of a priori information,

however, greatly impacted the resultant distribution, as shown

in Fig. 8(c). A minor fact to note is that Fig. 9(a) is also

much “brighter” than Fig. 8(a)—because the tumor was

located in the center instead of the upper back quadrant, the

window/level of the volume reconstruction did not have to be

changed in order to see it.

Overall, our simulation converged with about 97% submil-

limeter accuracy. Though the errors were minimal, the largest

elastic moduli discrepancies were seen around the boundary of

the simulated tumors, and the largest displacement errors were

seen both around the boundary of the tumor and the edge of the

hemisphere. The use of a priori information greatly improved

our results, while both use of the FSA algorithm and image

resolution size do not affect the accuracy of our results. Tumor

location also does not affect the accuracy of our outcome. The

implications of these results are further discussed in Sec. 4.

4. DISCUSSION

In this work, a methodology for performing breast elasticity

estimation using deformation resulting from the transition

between supine and prone patient postures was presented. The

procedure was developed and systematically assessed using a

biomechanical simulation representing a breast in the prone

position with a spherical tumor located within the breast.

In order to investigate the accuracy and robustness of the

approach for any given scenario, the synthetic tumors were

given elasticity values from the literature used to represent

three different common breast tumors: ductal carcinoma’s in

situ, invasive ductal carcinomas, and fibroadenomas and were

positioned with different sizes throughout the breast tissue.

The biomechanical breast simulation was based on a

physics-based approach. This choice was motivated by the

previously shown accuracy of the approach for head and

neck applications that were readily transferrable to the breast.5

In addition, this model was validated for simulating motion

caused by gravity, and the supine-to-prone deformation is

known to be gravity-induced.5,23,24 The implementation of this

T IV. Table showing average values for low (64 voxel diameter) and high (128 voxel diameter) resolution

hemispheres, both with and without a priori information.

Hemisphere size Elasticity window Displacement error

Averages ±1 kPa (%) ±5 kPa (%) <1 mm (%) Average time (s)

64 voxel mean 89.76±1.12 96.40±4.73 98.67±3.62 272.50±236.12

64 voxel with a priori mean 94.27±6.38 97.43±3.37 99.07±1.08 218.06±216.17

128 voxel mean 85.43±4.37 97.89±2.33 94.94±4.09 3345.38±1618.00

128 voxel with a priori mean 86.87±3.23 98.87±2.52 97.44±2.17 1595.69±1012.2
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F. 7. (a) shows a time comparison for distributions with and without a priori information for random distributions, while (b) shows an accuracy comparison

for the same datasets.

approach in a GPU environment enabled a high-resolution

biomechanical simulation in nearly real-time. Inversing the

forward deformation model allowed us to obtain elasticity

maps for patient-specific biomechanical models that will be

useful for reducing positioning errors in adaptive radiotherapy.

Using the well-validated constitutive model previously used

for head and neck allowed us to purely focus on the accuracy

and feasibility of the inverse analysis, rather than the model’s

accuracy in regards to simulating gravity-induced deforma-

tions. While the usage of such a GPU-based, biomechanical

model has been recently validated for head and neck tissues,

future studies will focus on the usage of such a model for

breast tissue, which needs to be clinically validated using

an extensive patient study. Model errors in such studies

typically stem either from tissue elasticity estimation errors

or from the model’s inability to represent the complex

anatomical deformation. Having shown in this paper that the

tissue elasticity estimation errors will be minimal for this

biomechanical model, future work will focus on a clinical

study to enumerate the model’s ability to quantitatively

represent the anatomy.

While most deformable modeling efforts may be insensitive

to soft-tissue elasticity data, our approach has a direct

relationship with the properties of soft tissue since it relies

on the supine-to-prone breast deformation, which is driven

by gravity. The ground-truth displacements required for our

methodology depend on the ability to register prone and

supine breast images with a one-to-one correspondence.

Due to the large deformation induced to the breast tissue,

image registration between these postures is a challenging

problem. Various deformable image registration algorithms

have been investigated by peers specifically for the prone-

to-supine breast transition.24,33,34 Future work will focus

on further investigating a deformable image registration

technique that provides accurate ground-truth data and a one-

to-one correspondence between breast tissue in the prone and

supine positions.

In our approach, we have employed a linear elastic

deformation model to deform the breast anatomy from supine

to prone patient posture. Such a deformation may be large

enough to cite a need for hyperelastic model to represent the

tissue behavior. Our future work will focus on extending the

method to a hyperelastic regime. Such an analysis will require

more patient postures to be imaged.

The iterative binary search optimization algorithm, along

with the FSA algorithm, allowed for the estimation of

elastic properties for the biomechanical model based upon

the deformation of each mass element. The performance of

the algorithm was confirmed with the high elasticity and

displacement accuracy that was achieved. The iterative opti-

mization algorithm allowed each mass element to converge

individually, so that even tumors with diameters as small as

5 mm were located accurately. While our simulation study

used a simplified framework that modeled tumors spherically,

the per voxel approach of our inverse analysis should allow

sufficient delineation of irregular tumors shapes as well. We

F. 8. Volume renderings of small IDC located in quadrant II. (a) shows the ground-truth distribution, (b) shows the reconstruction with a random initial guess,

and (c) shows the reconstruction using a priori information to make an informed initial guess.
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T V. Example of individual cases with and without a priori information for a large IDC in quadrant II, a

small fibroid in quadrant I, and a medium DCIS in quadrant III.

Elasticity window Displacement error

Large IDC quadrant II ±1 kPa (%) ±5 kPa (%) <1 mm (%) <3 mm (%)

Without a priori 86.43 97.68 88.30 100.00

With a priori 96.90 98.25 100.00 100.00

Small fibroid quadrant I ±1 kPa (%) ±5 kPa (%) <1 mm (%) <3 mm (%)

Without a priori 72.20 99.62 90.02 100.00

With a priori 81.24 99.64 96.47 100.00

Medium DCIS quadrant III ±1 kPa (%) ±5 kPa (%) <1 mm (%) <3 mm (%)

Without a priori 80.86 92.29 68.38 100.00

With a priori 91.20 99.03 95.49 100.00

believe the algorithm has potential to recognize other items

of interest that may be located within the breast that were not

investigated here. Future work will investigate the accuracy

of our approach for irregular tumor shapes and sizes, as well

as for irregular breast shapes.

Our results showed that an accuracy of 98% was achieved

in estimating the ground-truth elasticity. Because of the per

voxel nature of our approach, variations in the size of the

tumor and the breast geometry had negligible impact on the

accuracy of the estimation process. Our analysis indicated that

the elasticity can be successfully reconstructed for tumors

with a diameter as small as 5 mm and as large as 1.5 cm

within the breast tissue. Changes in image resolution and

geometry size showed no significant impact on the resulting

accuracy, indicating that the CT image resolution should not

influence the resulting elasticity estimation. The geometry size

alternatives also indicated that the biomechanical simulation

successfully represented different breast sizes.

The elasticity information that we obtain through this meth-

odology will be used to design a new immobilization device

specifically for precise and reproducible breast positioning.

Ideal breast geometry for radiotherapy is similar to that

achieved in the prone orientation, without the discomfort and

associated normal tissue doses.35 With the robotic assistance

of an immobilization device, this ideal position can be

achieved in a more comfortable, supine orientation. Our high-

resolution, physics-based breast model will act as a control

module for such a robotic system, simulating patient-specific

breast geometry and its deformation when interacting with

the robotic system.3 Future work will focus on improving

the breast simulation to more realistically simulate the breast

anatomy, eventually progressing to patient data. We believe

this methodology can also be readily transitioned to other

anatomies such as the lung, liver, and head and neck for

radiotherapy applications.

Because of the imaging techniques within current radio-

therapy workflows, our current methodology uses DICOM

CT images to construct the biomechanical model. Future work

will focus on expanding this methodology to be coupled with

US and MR measurements to further improve the model-

guided elasticity estimation process. Evolutionary algorithms

will be investigated and their functionality compared to that

of the FSA and binary search algorithms. The linear elasticity

assumptions will be expanded into a hyperelastic regime in

order to more accurately depict the biological tissue. Finally,

the biomechanical simulation will be implemented on a multi-

GPU platform to increase the resolution of the model and

decrease the computation time. These efforts are crucial

in order to apply the methodology in clinical radiotherapy

practice.

F. 9. Volume rendering of a large IDC located in the center of hemisphere. (a) shows the ground-truth distribution, (b) shows the reconstruction without the

use of the FSA algorithm, and (c) shows the reconstruction using the FSA algorithm.
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5. CONCLUSIONS

In this paper, we present a systematic study of a novel

GPU-based inverse analysis methodology for breast tissues

using supine/prone CT image datasets. The methodology was

investigated using a forward model, GPU-based, physics-

based breast simulation that was iteratively deformed to

represent the deformation of the breast between supine

and prone orientations. The inverse analysis consisted of

a gradient-based binary search optimization scheme that,

coupled with a fast-simulated annealing algorithm, updated

the spatial elasticity distribution of the breast tissue. Our

analysis showed that the methodology enables a 97% accuracy

in elasticity estimation of homogeneous breast tissue and

an embedded tumor with regards to our novel error metric

only using the two postures. These results indicate that our

methodology has the potential to be readily applied with great

accuracy to advance breast positioning techniques in clinical

radiotherapy practice.
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NOMENCLATURE

a Mass element

b Connected element
⇀

f Y,ab Tensile force on element a from connected

element b
⇀

f S,ab Shear force on element a from connected element

b
⇀

f
v,ab Dashpot damping force on element a from con-

nected element b
⇀

f a Internal corrective force on element a
⇀
v
n+1
a

Velocity of mass element a at iteration n+1
⇀
x
n+1
a

Position of mass element a at iteration n+1

δ Time step between iterations

ma Mass of mass element a
⇀
g Acceleration due to gravity

FE,a Elastic force on mass element a

E[i] Elastic modulus of voxel i

d[i] Displacement of voxel i

L Inter element distance before deformation
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