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Purpose: Real-time adaptive planning and treatment has been infeasible due in part to its high com-
putational complexity. There have been many recent efforts to utilize graphics processing units (GPUs)
to accelerate the computational performance and dose accuracy in radiation therapy. Data structure
and memory access patterns are the key GPU factors that determine the computational performance
and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize com-
putational and memory access efficiency and throughput on the GPU.
Methods: The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets
computed from the CT anatomy into a nonvoxel-based framework. In a process that takes only a
few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through
precalculated CT volumes to realign the coordinate system along the convolution direction, as defined
by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to
radial sampling and parallel ray-spacing parameters making the algorithm independent of the original
CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off
in computational performance and dose accuracy for different coordinate system configurations. In
order to find the best balance between the computed speedup and the accuracy, the authors employed
an exhaustive parameter search on all sampling parameters that defined the coordinate system configu-
ration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray
spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete
angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma
distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm
dose difference and distance-to-agreement criteria, respectively. Accuracy was investigated using three
distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT
data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms,
with isotropic voxel dimensions of 1, 2, and 4 mm.
Results: The nonvoxel-based GPU algorithm was independent of the data size and provided signifi-
cant computational gains over the CPU algorithm for large CT data sizes. The parameter search
analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm
radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of
voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the
sampling optimization, the authors achieved a total performance improvement factor of >175 000
when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a
voxel-based GPU dose convolution method.
Conclusions: The nonvoxel-based convolution method yielded substantial performance improve-
ments over a generic GPU implementation, while maintaining accuracy as compared to a CPU com-
puted ground truth dose distribution. Such an algorithm can be a key contribution toward developing
tools for adaptive radiation therapy systems. C 2014 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4895822]
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1. INTRODUCTION

Radiotherapy has seen a major push toward treatment plans
that are tailored to the patient and adapted to their radiation re-
sponse.1–4 Ignoring inter and intratreatment changes in tumor
size and position can lead to target under-dosing and exces-
sive exposure of healthy tissue.3,5 Real-time adaptive therapy
has been infeasible due in part to the time and computational
effort required for such tasks.6

In recent years, graphics processing units (GPUs) have gai-
ned widespread use in scientific computing, due to its mas-
sive parallelization, allowing thousands of times more floating
point operations per second than a typical CPU.7,8 There are
several hurdles along the path of a GPU implementation, but
their acceleration capabilities have made radiation oncology
challenges such as live tumor tracking and real-time dose esti-
mations into realistic possibilities.9

Advantages of using GPUs for dose calculations have been
previously examined, specifically in regard to the convolu-
tion/superposition algorithm. Three independent groups have
implemented the superposition/convolution onto GPU archi-
tecture. Hissoiny et al. reported acceleration of 10–20× in
2009 and later improved to nearly 30× when compared to an
optimized commercial CPU implementation.10,11

In 2011, GPU acceleration was pushed above 100× compa-
red to an optimized dual core CPU.12,13 Dose calculation accu-
racy of GPU and CPU implementations was compared by us-
ing 48 zenithal angles and 96 azimuthal angles. The accuracy,
calculated as the percent dose difference between correspond-
ing voxels relative to the maximum dose, agreed to within
2%–5%.

While these methods employed voxel-based calculations,
Chen et al.14,15 employed a nonvoxel-based (NVB) broad beam
framework first proposed by Lu16 to perform the calculations
prior to convolution but did not extend it to the actual convolu-
tion. Acceleration factors of 1000–3000 were reported using
their exponential kernel on GPU compared to a tabulated ker-
nel on CPU.

As the computational capabilities of GPUs continue to im-
prove, the performance bottlenecks have shifted from hard-
ware considerations, such as data transfer and maximum num-
ber of parallel threads, to software and code design consider-
ations. The GPU architecture has a unique memory hierarchy
with variable data retrieval speeds and scopes.7,8 In addition,
the pattern in which the memory is accessed on the GPU also
forms an important design consideration. To fully utilize the
potential computing power of the GPU, the memory design as-
pects must be considered, requiring approaching old problems
from new viewpoints. Convolution/superposition still provides
the best compromise between speed and accuracy when per-
forming dose calculations in heterogeneous materials. How-
ever, because of its inherent memory access pattern, the con-
volution process is performance-limiting when trying to port
the algorithm to the GPU, specifically the spherical sampling
pattern about the point of interest.

In this paper, a GPU-accelerated superposition/convolu-
tion is presented that employs an improved memory as-
signment optimization. Specifically, a NVB GPU-accelerated

superposition/convolution algorithm and its dependence on
sampling parameters are presented. Converting the dose con-
volution calculation to new coordinate systems aligned along
each convolution direction allows for fully optimized memory
access patterns along each step of the algorithm and provides a
significant computational speedup. We also introduce a fourth
sampling parameter, the spacing between parallel rays when
resampling for the NVB coordinate system, alongside the tra-
ditional spherical sampling variables of the convolution algo-
rithm. Utilization of greater sampling rates prolongs compu-
tational times and so was previously avoided for CPU based
dose calculation frameworks. Characterizing the accuracy and
performance effects of varying coordinate system parameters
allows greater control over the convolution, further optimizing
the algorithm.

2. MATERIALS AND METHODS

In this section, we first describe the collapsed cone convo-
lution (Sec. 2.A). It is followed by a discussion on the convo-
lution sampling, how it dictates the memory access patterns,
and the resultant performance considerations (Sec. 2.B). We
then present the nonvoxel-based algorithm (Sec. 2.C), detail
the experiments to quantify the nonvoxel-based algorithm’s
accuracy (Sec. 2.D), and compare its performance to a voxel-
based CPU algorithm and a generic GPU implementation
(Sec. 2.E).

2.A. Collapsed cone convolution/superposition
algorithm

Collapsedconeconvolution/superposition (CCCS)hasbeen
well documented.17–19 In this section, we present a brief review
of its mathematics.

2.A.1. TERMA calculation

In order to calculate the total energy released in matter, or
TERMA, the equivalent depth in water must be known for each
voxel in the target. For calculation purposes, the beam was
assumed to be originating from a point source 1 m above the
isocenter. Siddon’s ray-tracing algorithm was ported to GPU
architecture for this task.19 In order to compute the primary
energy deposition, the attenuation path of each ray was cor-
rected for density heterogeneities. This effective radiological
path length in water was calculated from source to voxel by
summing the contributions of each voxel along the ray path

di =

j

l jρ j, (1)

where i was the point of interaction, j was the voxel the ray
intersected, l j was the intersection length of the ray and the
voxel, ρ j was the voxel density relative to water and therefore
unitless.

Equations (2) and (3) show the discrete formulas for the
TERMA with a beam hardening correction summed over the
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discretized energy spectrum, E,

T(i)=

E

ΨEµEe−µEdi, (2)

T ′(i)=
 

EΨEµen,Ee−µEdi/T (i)
EΨEµen,Ee−µEd0/T (0)


∗T(i), (3)

where i was the point of interaction,Ψwas the energy fluence,
µ was the mass attenuation coefficient, and µen was the mass
energy absorption coefficient. Equation (3) shows the correc-
tion factor for beam hardening using the unattenuated values.20

The attenuation coefficients were drawn from the National
Institute of Standards and Technology database.21

2.A.2. Cumulative-cumulative kernel generation

The CCCS dose distribution was calculated by convolving
a polyenergetic cumulative-cumulative dose deposition kernel
(CCK) with the TERMA volume computed using Eqs. (2)
and (3).17,18 The kernel files were precomputed, Monte Carlo
generated, monoenergetic differential deposition distribution
kernel (DK) about a point interaction. For each geometric lo-
cation, the kernel files described the energy dispersal due to the
type of interaction (T): primary interaction, first scatter, second
scatter, multiple scatter, and bremsstrahlung/annihilation.22 To
create monoenergetic cumulative kernels (CK), the initial dif-
ferential kernels were summed over the interaction type and
integrated over the spherical sampling space.23 The cumulative
kernels were then integrated over the sampling space again
and then summed over the energy spectrum (E) according to
their spectrum weight (wE), constructing a single polyener-
getic CCK Refs. 23 and 24

CK(θ,ϕ,r)=


*
,


T

DKT (θ,ϕ,r)+
-

dr, (4)

CCK(θ,ϕ,r)=


wE


CK(θ,ϕ,r) dr


dE. (5)

2.A.3. CCK dose convolution

The superposition method was employed to scale the kernel

Dose(v)=


T ′(v ′)CCK( ρ̄v−v′∗ v − v ′)dv ′,

where


dv ′=


dϕdθdr, (6)

where v was the interaction point, v ′was the voxel being sam-
pled, ρ̄v−v′ was the heterogeneity correction applied to the
kernel, r was the radial component, θ was the zenith angle,
and ϕwas the azimuthal angle. The CPU algorithm tackled this
process using nested loops which cycled through each voxel,
v , within the beam and then sampled the surrounding volume
(


v ′dV ), before moving on to the next voxel.

2.B. Convolution sampling and memory
access patterns

The discretized convolution algorithm employed during the
CCCS calculations [Eq. (6)] required spherical sampling about
the voxel of interest and summing the dose contributions of
the surrounding volume. In practice, the dose at the point of
interaction was calculated by summing the contributions of
the discretely sampled surrounding volume according to these
three parameters: the number of zenithal angles (Θ), the num-
ber of azimuthal angles (Φ), and the size of the radial increment
(P). The number of sampling points and the computation time
were linearly related to Θ and Φ and inversely related to P.
The limit of sampling resolution was set by the kernel file
parameters. The dose deposition kernels were segmented into
24 concentric circles with varying radii from 0.1 to 60 cm and
48 zenithal segmentations equally spaced from 0◦ to 180◦. This
effectively created a ceiling to the zenithal and radial sam-
pling during convolution. Azimuthal sampling was limitless
in theory because the CCK was computed for a homogenous
material. This resulted in symmetric dose deposition about the
azimuth, and therefore the information was only recorded for
two dimensions. However, when applying the heterogeneity
correction, azimuthal sampling could have a profound effect
on computation accuracy.

2.B.1. Generic GPU implementation

A generic method to parallelize the algorithm was devel-
oped initially similar to the first published GPU implementa-
tion of the convolution/superposition algorithm.10,12 This sim-
plistic approach launched a GPU function for each zenithal and
azimuthal angle combinations, unrolled the outermost loops
which cycle through each voxel, and convolved them simulta-
neously. Each voxel within the volume was assigned a thread
and traced a ray from that voxel in the direction specified by
the zenithal angle,Θ, and the azimuthal angle,Φ, sampling the
density and TERMA at radial intervals of P and applying the
CCK, scaled by the density for heterogeneity. For the ground
truth sampling parameters of 48/48, this amounted to 2304
function launches.

2.B.2. Performance considerations and bottlenecks

The conventional GPU algorithm presented several hurd-
les when attempting to optimize memory access patterns for
GPU architecture. The GPU contained several memory types
with varying scopes and access speeds. Global memory had
the largest capacity but also had the greatest latency when ac-
cessing data, typically between 400–600 clock cycles. Shared
memory offered access speeds 100–150 times faster than
global memory, but had scope limited to a single block of
threads, and a much reduced capacity.8 Global access speeds
could approach shared access speeds if the memory fetches
were coalesced. This facilitated a group of adjacent threads
to simultaneously read from a group of adjacent memory ad-
dresses in the global memory space. The compiler will then
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combine these into a single larger memory fetch, greatly reduc-
ing the latency.7 Another design limitation is that the GPU’s
shared memory cannot be written into directly by the CPU.
The threads of the block must read in the data from global
memory first and fill the shared memory space. Therefore, the
most efficient way to attack the convolution is to organize the
threads along the convolution ray direction, utilize the coa-
lesced global memory fetches to write into shared memory, and
then use shared memory to perform the convolution.

The problem here is that the coalesced access is only pos-
sible in one direction while the convolution rays can have any
arbitrary direction as defined by Θ and Φ. Texture memory is
located in the global memory space, but is cached for local-
ity and also provides an intrinsic linear interpolation in three
dimensions. This makes it ideal when coalesced accesses are
not possible, but the memory reads are patterned predictably.
However, it is read-only unless it is created using a specialized
array that can be bound to a surface object. This feature is only
available on more recent generations of devices with compute
capabilities of 3.0 or higher.

2.C. Nonvoxel-based algorithm

In this section, we present the framework of our nonvoxel-
based algorithm. To take advantage of the different memory
spaces and maximize efficiency, we split the convolution into
four components: ray tracing, transposition, line convolution,
and summation. These four steps were performed for every
zenithal direction less than or equal to 90◦ and every azimuthal

direction. Figure 1 illustrates the movement of data between
GPU memory spaces during the process.

2.C.1. Ray tracing

We first converted the density and TERMA data volumes
from voxelized Cartesian coordinates into a nonvoxel-based
coordinate system aligned with the convolution ray direction.
To do this, the density and TERMA data (already residing in
the GPU’s global memory from the TERMA calculation) were
bound to 3D textures in the GPU’s texture memory. It was then
possible to trace through the volumes with a grid of parallel
rays, equally spaced by a distance, ∆. During ray tracing, the
volumes were sampled at intervals equal to the predefined
radial step size of the convolution, P. Figure 2(a) illustrates the
process. The parallel rays were incident on the TERMA map
at a zenithal angle, θ. The parallel rays were evenly spaced in a
2D grid. The spacing of the parallel rays is the fourth sampling
parameter introduced by the NVB convolution method. As the
rays traced through the volume, they sampled the TERMA data
at regular intervals defined by the radial sampling step size.

By utilizing texture memory and its intrinsic linear inter-
polation to resample the TERMA and density, the computa-
tional complexity remained at a maximum of O(p), where p
was the total number of sampling points as dictated by the ra-
dial step size and parallel ray-spacing parameters and cropped
to the size of the field plus penumbra. The number of rays
was dynamically allocated depending on the data size and
the angle of incidence. The new nonvoxel-based data volumes

F. 1. GPU memory flowchart for the NVB dose convolution algorithm.
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F. 2. NVB algorithm ray tracing. (a) An example TERMA map with the
convolution angle determined by θ. (b) Ray tracing. The TERMA resampled
along the convolution direction.

were written back into global memory using a coalesced write,
such that adjacent memory addresses represent adjacent rays.
Figure 2(b) displays the TERMA map from Fig. 2(a) in the
new nonvoxel-based coordinate system.

2.C.2. Transposition

These data volumes were transposed to facilitate a coa-
lesced memory read where adjacent memory addresses rep-
resented the sampling points along a single ray. The memory
access patterns of the ray-tracing write and the line convolution
read are illustrated in Fig. 3. This was done by doing coa-
lesced reads into shared memory tiles, transposing the tiles,
and performing a coalesced write back into global memory.
The spatial complexity of the transposition was also O(p).

2.C.3. Line convolution

Now that the data were aligned along the convolution di-
rection, a simple line convolution was performed.25 The data

F. 4. NVG algorithm line convolution. The figure shows the transpose of
the reformatted TERMA map in Fig. 1(b). The line convolution was perfor-
med along each ray as indicated by the arrows.

were again loaded into shared memory using a coalesced read.
Each thread in the block represented one sampling point along
a given ray. Figure 4 illustrates the line convolution displaying
the result of convolving the transposed TERMA map.

Each GPU thread then stepped away from itself in both
directions along the ray, accumulating the dose by multiplying
the TERMA from each voxel with the CCK and applying the
heterogeneity corrections by sampling the density. The value
of the CCK was calculated by first comparing the effective
radiological distance of the current voxel to an array of the
radial boundaries of the CCK in the GPU’s constant memory.
The CCK was loaded as a 2D array into the GPU’s texture
memory to take advantage of the intrinsic linear interpola-
tion on the GPU, which kept the computational complexity
of the convolution step at O(p ·m), where m was the number
of radial steps along each convolution ray sampled during the
convolution. By convolving both directions at once, it reduced
the number of function launches and increases performance.
The result was written directly into the GPU’s texture memory
using a surface write functionality.

2.C.4. Summation

The NVB dose data resided in the GPU’s texture memory
after the surface write at the end of the line convolution kernel.

(a) Ray-tracing Write Pattern

(b) Line Convolution Read Pattern

F. 3. NVB algorithm transposition and coalesced memory access. The nature of the ray-tracing algorithm only allows a coalesced memory write by assigning
adjacent memory locations to adjacent rays, as in (a) where each column represents a different ray as it traces through the volumes. However, in order to
perform a coalesced read into shared memory for the line convolution, adjacent memory locations must represent adjacent sampling points along the same ray,
as illustrated in (b), where the data has been transposed such that each row now represents a different ray.
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A GPU thread was launched for every voxel from the original
data set in the Cartesian coordinate system. The voxel’s loca-
tion in the convolution ray coordinate system was computed in
order to sample the NVB dose data. The dose contribution of
a single convolution direction converted back to Cartesian co-
ordinates is shown in Fig. 5(a) by reading from the convolved
dose that resided in texture memory. The intrinsic interpolation
of texture memory was once again utilized to keep the com-
putational complexity of this step to O(n), where n was the
total number of voxels in the original data set. The final dose
distribution was found by accumulating the contributions from
each convolution direction, as shown in Fig. 5(b).

2.D. Quantifying GPU convolution accuracy
and the effect of the sampling parameters

To quantify the accuracy of the GPU implementation, we
compared dose distributions for three digital phantoms with
varying geometries, referred to hereafter as the accuracy phan-
toms, and a series of 12 segmented patient lungs. Shown in
Fig. 5 are axial slices of the data sets used for the accuracy
comparisons. Phantom A was a simple, homogenous block
of water equivalent material. Phantom B, shown in Fig. 6(a),
contained a cylinder and a box of water equivalent mate-
rial (density of 1 g/cm3) surrounded by empty space/vacuum.
Phantom C, shown in Fig. 6(b), introduced a lower density
region (0.317 g/cm3) within the cylinder and serves as a simple
lung phantom. The classical slab phantom and mediastinum
phantom were also used for the accuracy study. The classical
slab phantom, shown in Fig. 6(c),18 contained layers of adipose
tissue, muscle, bone, and lung. The mediastinum phantom,
shown in Fig. 6(d), has two low density boxes surrounded by
water, simulating the lungs in the chest cavity. The resolution
of the accuracy phantoms was isotropic 2 mm and the size of
the matrix was 128×128×128.

(a) (b)

F. 5. NVB algorithm summation. The convolved TERMA map for the
current convolution direction is (a) converted back to the original voxelized
coordinate system and (b) summed with all other directions to obtain the final
dose distribution.

Real patient anatomy was also used for the accuracy cal-
culations, and a sample of the data sets are shown in Figs.
6(e)–6(h). The lungs were segmented out and exported into
128 cube data blocks with voxels of in-plane resolution of
0.12 cm and slice thickness of 0.3 cm. The volume surrounding
the lungs was set to have the density of 1 g/cm3. The tested
beam configuration was an open, square field whose isocen-
ter was placed at the volumetric center of the data set. The
spectrum was a discretization of a typical 6 MV treatment
beam with a flattening filter. The spectrum was divided into
14 monoenergetic bins. All dose distributions were evaluated
using a 3D implementation of the gamma dose distribution
comparison test,15,26,27 in addition to direct dose comparisons.
The gamma value is the Euclidean distance between the ref-
erence dose distribution and the evaluated distribution. The
gamma test has two test criteria; dose difference and distance
to agreement which were 2% and 0.2 cm, respectively. All
gamma evaluations were performed on percent dose distri-
butions, normalized to the maximum delivered dose. These
criteria were well within clinical tolerances.28

The NVB convolution method has four sampling parame-
ters that can be optimized. The zenithal, azimuthal, and radial
sampling of the original convolution, along with the parallel
ray spacing, introduced during ray tracing. Setting the radial
sampling and parallel ray spacing allowed the dose computa-
tion to be performed at a predetermined resolution, indepen-
dent of the CT resolution. For the phantom studies, gamma
results for voxels with zero density were ignored. The accuracy
percentages represented the fraction of voxels within the vol-
ume of interest with accumulated dose that failed the gamma
test. Ground truth was taken to be the CPU based calcula-
tion employing the highest number of zenithal and azimuthal
sampling rates.

2.E. Performance comparisons

To gauge the performance increases for the nonvoxel-based
GPU algorithm, we performed a series of tests on three ho-
mogenous water phantoms, hereafter referred to as the perfor-
mance phantoms. Each performance phantom was a 256 mm
cube, with isotropic resolutions of 1, 2, and 4 mm, which
resulted in dimensions of 2563, 1283, and 643 voxels, respec-
tively. The GPU algorithm was designed using NVIDIA’s
CUDA, compute unified device architecture. GPU simulations
were performed using an NVIDIA GTX 680 GPU which has
1536 cores and 2 GB of memory. The CPU was an Intel Core
i7-3820 @ 3.60 GHz with 8 GB RAM. For an inter-GPU
comparison, we also employ an NVIDIA GTX 780 Ti GPU
which has 2800 cores and 3 GB of memory.

3. RESULTS AND DISCUSSION

In this section, the accuracy and performance of the NVB
algorithm are reported. The results differentiate between the
effect of the GPU parallelization and the effect of the sam-
pling parameters. Section 3.A discusses the accuracy of the
parallelization method when comparing similar sampling pa-
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(a) (b) (c) (d)

(e) (f) (g) (h)

F. 6. Density maps for the phantom data sets. Phantoms B, C (a) and (b), the classical slab phantom (c) and mediastinum phantom (d) were used for the dose
accuracy studies. A sampling of the segmented patient lungs are also displayed (e)–(h). The segmented lungs were artificially surrounded with uniform water
equivalent material. The homogenous water phantoms are not displayed due to simplicity.

rameters. Section 3.B reports the effect of reducing the sam-
pling parameters on the accuracy of the dose convolution.
Section 3.C describes the performance of the NVB algo-
rithm in comparison to the ground truth CPU algorithm and
a generic GPU parallelization method. Section 3.D provides
the detail on the NVB algorithm’s dependence on the size of
the field and the size of the target data set. The performance
gain from reducing the sampling parameters is described in
Sec. 3.E.

3.A. GPU accuracy

The accuracy of parallelizing the convolution algorithm
was verified by examining the percent depth dose (PDD) and
the profile at 10 cm depth using direct dose comparisons. Fig-
ure 7 displays the percent depth dose and cross profiles for
the classical slab phantom and mediastinum phantom. Several
beam sizes were examined, and the percent error was less than
1% for all voxels except for those with high dose gradients
such as the penumbra and the buildup region. Much of the

F. 7. Percent depth dose and cross profile comparisons. The PDD and profile for both the CPU convolution and the NVB GPU convolution for the mediastinum
phantom irradiated with a 1 × 1 cm field is shown in (a). The corresponding percent error between the curves is displayed in (c). The same curves are displayed
for the classical slab phantom irradiated with a 5 × 5 cm field in (b), with its respective percent error in (d).
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error seen between the CPU and GPU implementations can be
attributed to the fact that the convolution is being calculated
on different resolution grids. The NVB algorithm resamples
the data according to the parallel ray spacing and radial step
size variables, and therefore is not convolving with exactly the
same resolution as the voxel-based CPU algorithm. Figure 8(a)
displays the results of convolving a 1×1 cm2 field on the clas-
sical slab phantom at three different resolutions. Figure 8(b)
shows the percent error in the PDD between 1 and 2 mm resolu-
tions of the CPU, compared to the error seen between the CPU
and the NVB GPU algorithms. The error between the two CPU
resolutions is on the same order as the error seen between CPU
and GPU. The NVB algorithm was run using 1 mm radial step
size and 1 mm parallel ray spacing. When the resolution of the
CPU is comparable to the NVB coordinate system, the average
error decreases from 0.26% to 0.15%. Again, the largest error
is seen in the high dose gradient regions. Due to the intrinsic
differences that arise from convolution on different resolution
calculation grids, we employed the 3D gamma dose distribu-
tion comparison tool when studying the effect of the sampling
parameters on the accuracy of the NVB algorithm.

Gamma analyses were performed over the entire spectrum
of angular sampling combinations, using multiple field sizes
and targets. When using the same sampling parameters as the
ground truth calculations performed on the CPU, we observed
that all voxels calculated using the nonvoxel-based GPU par-
allelization passed the gamma test at 2% and 2 mm. Such a
result shows that the algorithm presented in this paper provided

the same accuracy as that of clinically used dose convolution
implementations.

3.B. Accuracy as a function of sampling parameters

The plots in Fig. 9 display the percentage of voxels within
the calculation cone that failed the gamma criteria as a function
of angular sampling. Ground truth data were computed on
the CPU using 48 zenithal and 48 azimuthal directions, with
a 1 mm radial step size. Figures 9(a)–9(c) shows the results
for the accuracy phantom data sets. For an angular sampling
combination of 8 zenithal and 8 azimuthal directions, the aver-
age failure percentage for the phantoms was just 0.012% with
a maximum of 0.082% for Phantom C. Figure 9(d) displays
the average failure rates for the segmented lung data sets. The
average failure rate was 0.74% for 8 zenithal and 8 azimuthal
directions.

From the surface plots (Fig. 9), it is clear that for homoge-
nous volumes such as phantom A, increasing the azimuthal
sampling has little effect on the accuracy due to rotational
symmetry about the beam direction. However, reducing the
number of zenithal angles below 8 resulted in quickly increas-
ing error because of the directionality of the kernel. They also
show that for increasingly complex geometries, the total er-
ror became more dependent on the sampling rate. This was
particularly evident in the azimuthal direction, as shown when
comparing the patient lung data sets to phantom A, which had
negligible error due to azimuthal sampling.

F. 8. Percent dose difference for different resolution calculation grids during convolution. The percent depth dose curve for a 1 × 1 cm field on the classical
slab phantom at three resolutions: 1, 2, and 4 mm isotropic voxels (a). (b) displays the percent dose difference between the 1 and 2 mm convolutions on the CPU,
as well as the difference between CPU and NVB GPU convolutions when both are calculated at 1 and 2 mm.
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F. 9. Dose accuracy as a function of angular sampling. The surface plots above display the percentage of voxels to fail a gamma test with criteria of 2% and
2 mm. The number of convolution rays in the zenithal and azimuthal directions was varied from 4 to 48. Ground truth was taken to be 48 × 48 rays. Plots (a),
(b), and (c) display the plots for their respective phantoms, while plot (d) shows the failure percentage averaged over all twelve lung models.

Figure 10 displays a 3D rendering of the gamma results for
Phantom A from a beam’s eye point of view. The volume itself
can be seen as a gray cube, while the failing voxels are overlaid
with a heat map. Three angular sampling combinations are
displayed, illustrating the effects of reduced sampling in both
the zenithal and azimuthal directions. Reducing the azimuthal
sampling increased the discrepancies in the penumbra regions
of the beam, while reducing the zenithal sampling causes more
significant deviations along the beam axis.

Figure 11 plots the percent of voxels to fail a gamma test at
2% and 2 mm when increasing the radial sampling and parallel
ray spacing. Increasing either the radial step size or the parallel
ray spacing any higher than 2 mm caused rapidly increasing

dose distribution modeling errors. The best results were seen
when the radial step size was the same as the ground truth at
1 mm, and the parallel ray spacing was less than or equal to
2 mm.

To further illustrate the influence of the parallel ray spacing
and radial step size on the integrity of the dose calculation,
Figure 12 displays the percent dose difference in the PDD for
a 1×1 cm field on the classical slab phantom.

The plots in Fig. 13 show the percent dose difference for
the depth profile along the central beam axis and the beam
profile perpendicular to the beam through isocenter for differ-
ent sets of sampling parameters. Comparing the percent dose
difference between the 48×48 and the 8×8 angular sampling

 48 zenithal angles x
 4 azimuthal angles

(a)  4 zenithal angles x
 4 azimuthal angles

(b)  4 zenithal angles x
 48 azimuthal angles

(c)

F. 10. Locality of dose discrepancies as a function of angular sampling. The figures display the results of a gamma test with criteria of 2% and 2 mm for a
1283 phantom with 1 mm isotropic voxels irradiated with a 100 × 100 mm field at isocenter. (a) shows that reducing the azimuthal sampling causes errors in the
penumbra region. (c) shows that reducing the zenithal sampling causes higher error along the beam axis. (b) shows the result for reduced sampling in both the
zenithal and azimuthal directions.
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F. 11. Dose accuracy as a function of radial sampling and parallel ray
spacing. The surface plot displays the percentage of voxels to fail the Gamma
test with criteria of 2% and 2 mm. The radial sampling and parallel ray
spacing define the new nonvoxel coordinate system. The size of the sampling
steps has a drastic effect on the accuracy of the dose calculation.

combination, the error was less than 1% for the majority of
the depth profile and beam profile and the maximum error
was less than 2%. This bolstered the conclusion that the 8×8
angular sampling combination provided clinically acceptable
accuracy even without considering the distance to agreement
criterion of the gamma distribution analysis method. Figures
13(a) and 13(b) illustrate how reducing the radial sampling
caused large errors in the buildup region and penumbra, even
when the increase was as small as 1 to 2 mm. Figures 13(c) and
13(d) display similar plots where radial sampling was constant
at 1 mm, and the parallel ray spacing was varied between 1 and
2 mm. As shown by the two lines with 8×8 angular sampling,

increasing the parallel ray spacing caused little to no increase
in the error.

3.C. GPU performance

Table I gives the computation time for the generic GPU
implementation and the nonvoxel-based implementation fully
optimized for the GPU architecture, calculated on three ho-
mogenous water performance phantoms. This computation
times reported for both the CPU and the GPU encompass only
the convolution calculation. For the GPU, this includes all ker-
nel calls (four per convolution direction) and for the CPU, this
includes all calculations within the outermost loop of the con-
volution. The TERMA was calculated previously and already
resided in the global memory of the GPU. The average time
of the TERMA calculation was 1 ms. Similarly, the density
matrix was also residing in the GPU’s global memory, so the
extra overhead due to memory copies from CPU to GPU was
minimal. On average, including the TERMA computation and
memory copies added 5 and 6 ms to the overall computation
time. The times are displayed for combinations of 24 zenithal
angles with 16 azimuthal angles for 384 total rays (commonly
used parameters for comparison testing14 and 8 zenithal angles
with 8 azimuthal angles for 64 total rays, using a 100 mm2

field at isocenter. The computation times for both the generic
GPU and NVB algorithms were linearly related to the number
of convolution rays. For the most computationally expensive
calculation, the NVB algorithm improved the calculation time
from 45 to 2 s, a speed factor increase of over 22. The accu-
racy study presented above showed that an angular sampling

F. 12. Effect of parallel ray spacing and radial step size on the percent dose difference as a function of depth. In these experiments, the classical slab phantom
was irradiated with a 1 × 1 cm2 field. (a) shows the effect of increasing the radial step size, where 0.5 mm is taken as ground truth and all other parameters are
held constant. (b) shows the effect of increasing the parallel ray spacing, where again 0.5 mm is taken as ground truth and all other parameters are held constant.
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F. 13. Percent difference in dose profiles due to sampling. Plot (a) shows the percent difference from ground truth for the depth profile along the beam axis for
three combinations of zenithal, azimuthal, and radial sampling. (b) shows the percent difference along the beam profile through isocenter for the same sampling
combinations. Plots (c) and (d) introduce the effect of the parallel ray spacing during the ray-tracing step in the nonvoxel-based algorithm.

combination of 8×8 produced acceptable results, and the total
convolution time for the highest resolution phantom, a 256
voxel cube with 1 mm isotropic voxels, was less than 350 ms
for the nonvoxel-based algorithm.

Table II presents the performance gains when comparing
identical sampling parameters across all three algorithms. The
results presented were averaged over every angular sampling
combination and are shown with the standard deviation. For
the 643 phantom, the generic GPU parallelization technique
provided an acceleration factor of nearly 60 over the CPU.
The NVB implementation boosted the performance to more
than 86 times over the CPU. The comparison showed the NVB
implementation increased performance 1.46× over the generic
GPU implementation on average. This advantage grew as the
data size and computational complexity increased.

T I. Computation times.

Generic
GPU

NVB
GPU

Generic
GPU

NVB
GPU

GTX 680 GTX 680 GTX 680 GTX 680
GPU hardware
directions

384 rays
(s)

384 rays
(s)

64 rays
(s)

64 rays
(s)

256 × 256 × 256
(1 mm resolution)

45.03 2.04 7.42 0.343

128 × 128 × 128
(2 mm resolution)

8.01 1.61 1.30 0.274

64 × 64 × 64
(4 mm resolution)

2.50 1.70 0.42 0.282

As seen from the ratios of the CPU over the generic GPU
convolution times, the advantage of the GPU increased with
an increase in the data resolution because the resolution was
directly related to computational effort. However, the ratios
of the generic GPU implementation convolution time over the
NVB implementation convolution time showed that the opti-
mized memory accesses of the NVB method were able to mai-
ntain significantly higher throughput as computational effort
increased. The NVB method was nearly 22 times faster than
the generic GPU implementation for the 2563 phantom. This
resulted in a total acceleration factor of more than 4000 when
comparing the CPU algorithm against the NVB GPU paral-
lelization technique. The significant improvement from the
generic GPU method to the NVB method could be attributed
to an intrinsic data size independence of the NVB technique,
which will be further discussed in the next section.

3.D. Field size and data size dependence

An advantage of transforming the convolution into a non-
voxel-based coordinate system was that the calculation grid

T II. Average acceleration using the GPU parallelization.

Acceleration phan-
tom resolution

643 phantom
4 mm voxels

1283 phantom
2 mm voxels

2563 phantom
1 mm voxels

CPU/generic GPU 59.26 ± 1.66 113.2 ± 1.75 193.7 ± 12.7
Generic GPU/NVB
GPU

1.46 ± 0.04 4.8 ± 0.14 21.6 ± 0.6

CPU/NVB GPU 86.63 ± 3.49 546.4 ± 20.3 4175.5 ± 354.9
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F. 14. Convolution computation time as a function of field size and data size. The plot displays the convolution time as a function of the angular sampling
combination for three different field sizes on each of the performance phantoms. The results are clearly grouped by field size, while there is little distinction
between the phantom data size.

was then controlled exclusively by the sampling parameters.
The resolution of the grid in the nonvoxel-based system was
determined by the radial step size and the parallel ray spacing,
and the number of rays cast through the volume depended
only on the size of the field and the parallel ray spacing. This
eliminated the dependence of the computation time on the
original data resolution. Figure 14 shows the convolution time
for the nonvoxel-based algorithm using a 10×10 mm2 field,
a 50×50 mm2 field, and a 100×100 mm2 field, over a spec-
trum of angular sampling combinations. The data are clearly
grouped by field size but more interestingly are the lack of
separation across the data size. The nonvoxel-based algorithm
proved to be independent of the data volume because it resam-
pled the data according to the radial step size and the parallel
ray-spacing parameters. This caused large performance gains
over the CPU algorithm.

3.E. Sampling acceleration

The ground truth calculation time was taken as the maxi-
mum convolution sampling combination of 48 zenithal and az-
imuthal angles. The sampling acceleration was directly related
to the number of rays used during convolution. Reducing the
angular sampling of each angle by a factor of 2 resulted in four
times speedup, and so forth. By reducing the angular sampling
to 8 zenithal angles and 8 azimuthal angles, the performance
was increased by a factor of 36. As shown in Fig. 15, com-
bining the reduced sampling acceleration with the acceleration
provided from the nonvoxel-based GPU algorithm pushed the
maximum acceleration over 175 000 times for the 256 voxel
cube phantom and a 100×100 mm2 field. While the convo-
lution times were very similar across data sizes for the NVB
algorithm, Fig. 15 shows a fairly consistent increase in acceler-
ation around one order of magnitude as the data size increased.

F. 15. Performance acceleration as a function of field size and data size. The plot shows the total acceleration due to parallelization on the GPU and reduced
angular sampling. Greater computational effort results in greater acceleration. The highest resolution phantom irradiated with the largest field size results in the
most voxels involved in the convolution calculation and the greatest acceleration. The data size has a strong correlation with acceleration, as the 10 × 10 mm2

field size on the 2563 phantom shows greater acceleration than the 100 × 100 mm2 field size on the 643 phantom.
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T III. Acceleration using the optimal sampling parameters and GPU pa-
rallelization.

643 phantom
4 mm voxels

1283 phantom
2 mm voxels

2563 phantom
1 mm voxels

CPU/generic GPU 2100 4100 8200
CPU/NVB GPU 3100 19 500 176 000

Also, the smallest field on the highest resolution phantom
saw larger accelerations than the largest field on the lowest
resolution phantom. The total combined acceleration for both
the generic GPU and NVB implementations from GPU paral-
lelization and reduced sampling are presented in Table III for
each of the three acceleration phantoms.

4. DISCUSSION

The convolution is scalable to multiple GPUs. Theoreti-
cally, there was a direct relationship between the number of
GPUs employed and the performance gains for large work-
loads.29 These simulations used an open square field for verifi-
cation and comparison. Utilizing multiple GPUs would allow
calculating treatment plans with multiple fields. Additional as-
pects for investigation are the incorporation of complex beam
geometries, multiple fields, multi-leaf collimators, and the var-
ied fluence maps used in intensity modulated therapies.

Figure 16(a) shows the depth dose and cross profiles for a
5×5 cm field in a homogenous water phantom from a Monte

Carlo generated dose distribution using the same energy spec-
trum as the convolution algorithms, a Monte Carlo generated
distribution using the phase space energy spectrum data from
a Varian TrueBeam® linear accelerator with flattening filter
provided by Varian Medical Systems, the voxel-based CPU
convolution used as ground truth in this paper, and the NVB
GPU convolution presented in this paper. The Monte Carlo
generated dose distributions were created using 4, with
histories of 2×109 photons to achieve less than 2% statistical
variation. Both the CPU convolution and the NVB convolu-
tion were calculated using 8 azimuthal angles and 8 elevation
angles, with a radial step size of 1 mm. Additionally, the NVB
convolution used a parallel ray spacing of 1 mm. Significant
differences can be seen along each profile between the con-
volution methods and the other data. Figure 16(b) plots the
percent dose difference for both the CPU convolution and the
NVB GPU convolution. While the CPU convolution is regard-
ing as ground truth in this paper, the plot shows that there is
definitely room for improvement to more realistically recre-
ate the actual dose distributions measured from the treatment
machine and the gold standard Monte Carlo dose calculations.

With further performance enhancement, we should be able
to deconstruct the polyenergetic kernel and calculate the energ-
ies independently, which will eliminate some assumptions and
estimations currently used in the convolution/superposition
algorithm, and produce a dose distribution closer to the Monte
Carlo distribution.

F. 16. Direct dose comparisons between Monte Carlo, TrueBeam, voxel-based CPU convolution, and NVB GPU convolution. The depth dose and cross
profiles for a 5× 5 cm2 field at 10 cm depth are shown for each dose distribution source in (a). The percent difference for the depth dose profiles is shown in (b).
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T IV. Percentage of total GPU computation time for NVB convolution
algorithm.

Acceleration
phantom
directions

643 phantom 1283 phantom 2563 phantom

384
rays

64
rays

384
rays

64
rays

384
rays

64
rays

Ray tracing 4.51 4.40 10.95 10.68 19.45 19.67
Transposition 4.60 4.50 3.96 3.92 2.96 2.96
Line convolution 90.06 90.27 82.17 82.54 61.10 61.02
Summation 0.83 0.83 2.92 2.85 16.49 16.35

Table IV tabulates the computation time dedicated to each
of the four components of the nonvoxel-based algorithm for
both the high and low convolution ray count and each of
the performance phantoms. The performance bottleneck still
resided with the convolution step due to the requirement for
ray-casting along the line to accumulate the effective radio-
logical distance when applying the heterogeneity correction.

We are currently investigating a method to stretch the data
volume according to effective radiological distance during the
initial ray tracing. The convolution could then be even further
parallelized as each data point in the nonvoxel-based coordi-
nate system would represent an equal amount of attenuation.
The algorithm would no longer have to step along the rays to
apply the heterogeneity correction but simply apply multipli-
cation and summation reduction techniques which are much
more suitable for parallel architecture.

Asthecomputinghardwarecontinually improves, thesoftw-
are design considerations discussed in this paper become more
and more critical to maximizing performance. Just as Table I
reported the improvement in computation time of the NVB
algorithm compared to the generic GPU algorithm, Table V
compares the performance of our NVB algorithm for the GTX
680, which the algorithm was developed on, and the newest
card released by NVIDIA, the 780 TI. An average speedup over
1.8 times was seen for both high and low number of convolu-
tion rays on all three of the performance phantoms.

5. CONCLUSIONS

The convolution parameters (zenithal angle sampling, az-
imuthal angle sampling, radial step size, and parallel ray
spacing) could be optimized for maximum acceleration with
minimal loss of accuracy. This was demonstrated by perform-
ing dose calculations using five digital phantoms and twelve

T V. NVB computation times with improving hardware.

384 rays 64 rays

Directions
GPU
hardware

GTX
680
(s)

GTX 780
TI
(s)

GTX
680
(s)

GTX
780 TI

(s)

256 × 256 × 256 2.04 1.06 0.343 0.177
128 × 128 × 128 1.61 0.89 0.274 0.149
64 × 64 × 64 1.70 0.98 0.282 0.161

patient lung CTs. In both cases, a zenithal/azimuthal combi-
nation of 8/8 provided the best performance while maintaining
accuracy. Both the phantoms and lung models passed a gamma
test of 2% or 2 mm at better than 99%.

Splitting the acceleration between the sampling optimiza-
tion and GPU implementation showed a consistent speedup of
about 36 when reducing the convolution sampling from 48/48
to 8/8, while the GPU implementation provided a second im-
provement level between 86 and nearly 4200 times speedup de-
pending on the data size and resolution. This resulted in total
performancegainsof justover3000timesfor thesmallest64vo-
xel performance phantom and over 175 000 times for the largest
256 voxel performance phantom when compared to a nonop-
timized CPU algorithm. Optimizing the NVB algorithm for the
GPU architecture also improved the performance significantly
compared to a generic GPU implementation, providing nearly
22 times speedup for the 256 voxel performance phantom.

Future work will see the expansion of our nonvoxel-based
convolution to a multi-GPU framework. Implementing the out-
lined optimization strategies and eliminating many of the ass-
umptions and estimations currently employed by convolu-
tion/superposition to reduce computation times, this method
can improve both accuracy and speed for computing on-the-fly
dose distributions. These improvements are valuable for the
clinical dosimetry efficiency and will facilitate real-time adap-
tive radiotherapy.
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