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Abstract
Purpose The accuracy of 4D-CT registration is limited by
inconsistent Hounsfield unit (HU) values in the 4D-CT data
from one respiratory phase to another and lower image con-
trast for lung substructures. This paper presents an optical
flow and thin-plate spline (TPS)-based 4D-CT registration
method to account for these limitations.
Methods The use of unified HU values on multiple anatomy
levels (e.g., the lung contour, blood vessels, and parenchyma)
accounts for registration errors by inconsistent landmark HU
value. While 3D multi-resolution optical flow analysis regis-
ters each anatomical level, TPS is employed for propagating
the results from one anatomical level to another ultimately
leading to the 4D-CT registration. 4D-CT registration was
validated using target registration error (TRE), inverse con-
sistency error (ICE) metrics, and a statistical image com-
parison using Gamma criteria of 1 % intensity difference in
2 mm3 window range.
Results Validation results showed that the proposed method
was able to register CT lung datasets with TRE and ICE val-
ues <3 mm. In addition, the average number of voxel that
failed the Gamma criteria was <3 %, which supports the clin-
ical applicability of the propose registration mechanism.
Conclusion The proposed 4D-CT registration computes the
volumetric lung deformations within clinically viable accu-
racy.
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Introduction

Recent advances in radiation delivery methods have led to an
increased effectiveness in treating lung cancer. However, a
key challenge that remains for lung cancer radiotherapy treat-
ment is the ability to know and track the movement of the lung
tumor throughout the respiration cycle during the radiother-
apy procedure. Undetected and uncompensated lung tumor
motion caused by variations in the subject breathing pattern
can lead to dose delivery errors and suboptimal radiotherapy.
Strategies to adjust for some of these anatomical or positional
variations include the use of margins to expand the volume of
measured or suspected tumor and the subsequent irradiation
of this larger volume (termed the Planning Target Volume,
PTV). While the usage of large PTV margins for a lung tumor
may lead to overdosage of the normal lung tissues, breathing
variations may lead to an under dosage of the lung tumor. The
radiation treatment efficacy needs to be further investigated
for the radiation dose delivered to a dynamically deforming
lung anatomy [1–6].

The class of biomechanical models that reflect the dynamic
deforming lung anatomy based on a specific stimulus (e.g.,
tidal volume change, movement of diaphragm) is referred as
physics-based models [7]. The models may include physics-
based properties such as Young’s modulus and bulk modulus.
The usage of such physics-based models leads to adaptive
radiotherapy frameworks where the radiotherapy accounts
for the organ motion that occurs during the treatment frac-
tion. Recent advances in the field of real-time physics-based
deformation models have led to the development of a subject-
specific physics-based lung deformation model that can be
used for simulating and visualizing the lung tumor motion
and the lung surface motion [8]. Physics-based volumetric
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lung models that are developed from 4D-CT lung datasets
show the lung anatomy (e.g., blood vessels, airways) defor-
mation at different breathing patterns and facilitate account-
ing for the radiation delivery to both the normal tissues and
the tumor.

Physics-based models rely on volumetric displacement
values extracted for 4D imaging. To compute the volumet-
ric displacement in physics-based models, registration tech-
niques using the 4D lung anatomy can be used [9,10]. From
the volumetric displacements, the full range of tumor loca-
tion and motion during the respiration cycle can be estimated
[11]. However, undetected and uncompensated errors in reg-
istration may lead to errors in the physics-based models that
may be carried into the adaptive radiotherapy workflow [6].
Registration errors are caused by two limitations: (a) varia-
tions in the image voxel HU from one respiratory phase to
another and (b) low image contrast in regions such as the
parenchyma. Developing a 4D-CT image-based registration
algorithm that accounts for these limitations forms the key
contribution of this paper.

In this paper, we propose a multi-resolution optical flow
and TPS-based 4D-CT lung registration method. To min-
imize registration errors caused by inconsistencies in the
voxel intensity from one breathing phase to another, we used
anatomy levels to represent different lung substructures. Each
3D lung volume was segmented into multiple anatomical
levels, assigned unified consistent voxel intensity for each
anatomy level and registered using the optical flow method
at multiple resolutions for each anatomical level separately.
The registration results of an anatomical level were then
interpolated for the next anatomy level using TPS and used
as initial displacement for its multi-resolution optical flow
registration. For comparison purposes, results shown in this
paper compared the 4D-CT lung images acquired for non-
small-cell lung cancer subjects undergoing radiotherapy, esti-
mated the 3D lung displacement from one breathing phase
to another using the proposed method, and compared the
motion estimation with three different registration methods
(multi-resolution optical flow method, free-form registration,
and inverse consistent demons method) with a single level of
anatomy that includes all the sub-anatomical structures.

Related works

In this section, we further discuss the registration methods
used for medical imaging related to our proposed method and
registration method validation.

Lung registration methods

Lung registration methods have been extensively investigated
in the field of medical imaging as well as in the field of

radiation oncology [9,10,12,13] and benchmarked for dif-
ferent input datasets [14]. While a large body of related
works exists, a concise review of the 4D-CT lung registration
methods is discussed in this subsection. Registration methods
can be broadly classified into either parametric or physics-
based methods. Parametric methods employ image intensity
and additional smoothing-based constraints for registering
source images with the target images. Betke et al. [15] pre-
sented an iterative rigid body transformation-based approach
for registering the lung surface models. This method does not,
however, take into account the local continuity in displace-
ment. Additionally, only the surface of the lung was regis-
tered. In [14], a B-spline-based registration was discussed
with emphasis on its validation. In this registration, the dis-
tribution of the landmarks inside the lungs is divided into four
sub-anatomical regions for each lung for improving the reg-
istration accuracy. A multi-resolution dataset for each lung
is created, and a clinical expert tracks the landmark motion
on each resolution. The rest of the lung is registered using
B-splines. A key issue in achieving intensity-based estima-
tion of the 4D volumetric lung motion is that it is limited by
low resolution and low contrast constraints imposed by the
4D-CT data. The low resolution and contrast of the 4D-CT
data are a result of the steps taken to minimize the radia-
tion exposure to the subject from 4D-CT imaging. In a free
breathing image, the low spatial contrast in the voxel intensity
combined with the image noise renders the key landmarks to
have different HU values at different air volumes inside the
lung. Yin et al. [16] discuss an approach to address the inten-
sity variation using a B-spline-based approach coupled with
a cost function that characterizes the HU values of voxels as
a combination of tissue and air and minimizes the differences
in the squared tissue volume.

Physics-based registration methods are mainly used in
conjunction with parametric methods to include additional
constraints. This yields a cost function, which can subse-
quently be minimized to obtain the registration. In an early
work [17,18], a method where a few landmarks, namely
the airway bifurcations, were tracked from one volume to
another is presented. The surrounding anatomy was reg-
istered from one volume to another using a continuum
mechanics approach. Three main constraints used are non-
compressibility, divergent free, and continuity preserving.
Similar efforts by peers [19–21] propose forward and inverse
based estimation of the lung image registration. The for-
ward step is where the source is registered to the target and
then inversely the target is reregistered to the source. This
is used to define a cost function that minimizes the differ-
ence between the forward and the inverse registration. The
forward and inverse transformations themselves are taken
as vectored values, and their difference is minimized. Ding
et al. [22] used this lung registration-based assessment for
estimating the lung tissue mechanics. Specifically, the lung
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datasets are registered using an inverse consistent approach.
The Jacobian value is then computed for each voxel posi-
tion. When the Jacobian is positive, the tissue at that voxel
is considered to be expanding; otherwise, it is contracting.
Furthermore, Pan et al. [23] completed a lung registration-
based assessment of the local lung tissue expansion. The
registration was done using inverse consistent image regis-
tration and validated using xenon CT imaging. As a compari-
son parameter, the Jacobian value for each voxel is measured
and compared with the xenon CT imaging. The work pre-
sented a manual way to register landmarks from one airway
branching tree to another. It is followed by a cost minimiza-
tion function that when minimized will give the registration
of all the other points. The cost minimization includes lin-
ear elasticity constraints and the reverse displacement con-
straints. The method, however, assumes constant and linear
elastic parameters, which may not be accurate for every sub-
ject.

Optical flow methods

Optical flow-based registration has been widely investigated
in different domains of image-based motion tracking [11].
The optical flow registration method tracks the 2D/3D motion
of 3D objects using multiple images of the objects in motion.
The method characterizes a 3D object in 2D images as fea-
tures and correlates the features from one image to another in
such a way that the cumulative intensity displacement gradi-
ent is minimized. For clarity, the method is briefly discussed.

The optical flow registration method starts with an initial
estimated displacement (typically set to 0 for each voxel) and
then refines it according to partial derivative of voxel intensity
and weighted sum of displacement from all nearby voxels.
Displacement estimation is iteratively updated until the dis-
placement in the whole field converges [24]. The advantage
of this method is that it manages to track the overall motion
of the field even if some feature points cannot be tracked.

The optical flow registration method, however, has some
limitations in 4D-CT lung data registration, which reduces
the overall accuracy of the lung registration. First, the opti-
cal flow algorithm assumes small displacement, since the first
partial derivative of intensity relies on Taylor series expan-
sion, which is only valid with small changes. The accuracy
is decreased if the displacement is larger than 1 voxel dis-
tance. Zhang et al. [11] use a multiple resolution algorithm to
address the issue. This method is based on the fact that a large
voxel distance between any two voxels in an image becomes
smaller when the resolution of the images is reduced. The
method works as follows. For any given pair of source and
target images, the displacements of each feature in the source
are first calculated using the lowest resolution of both the
source and the target images. The initial value of the dis-
placement at this resolution is considered to be 0. The com-

puted displacement at the lowest resolution is propagated to
the image pair at the next resolution as the initial value of
displacement. This process is repeated for the image pairs at
each resolution until the displacement is computed for the
highest resolution image pair.

The accuracy of the multi-resolution optical flow is lim-
ited by the fact that the displacement accuracy of one voxel
depends on the accuracy of nearby voxels and is affected by
the non-constant intensity of the landmarks in the image data.
From the CT imaging perspective, the HU value represents
the photon attenuation of an anatomical location. Due to the
lung motion and large air volume change inside the lung
during respiration, the photon attenuation of the same point
may change from one respiratory phase to another. Studies
in our institution have shown that the HU values of the 3D
lung anatomical structures do not remain constant for the
entire 4D image dataset. This observation is further detailed
in “Landmark intensity variation studies” section. Neverthe-
less, such registration error is introduced into both the sin-
gle and multi-resolution optical flow because of the constant
intensity assumption and needs to be further investigated and
addressed.

Additionally, in the case of lungs, the volume is com-
posed of different anatomical components that each requires
a different weight during registration. Each anatomical con-
stituent (e.g., blood vessels, airways) is known to have a dif-
ferent HU value. The method proposed in the paper performs
optical flow-based registration at each level of anatomy sep-
arately thereby preventing the propagation of errors from
anatomical level to another.

Anatomy level-based registration

The usage of multiple anatomical levels for the lung registra-
tion is analogous to the creation of anatomical maps for brain
image registration using posterior probabilities distribution
and Kullback Liebler divergence [25]. However, the usage of
hierarchical anatomical maps for lung 4D-CT registration is
a novel contribution of the proposed work. The HAMMER
algorithm has been proposed as a hierarchical approach for
brain image registration [26,27] and uses the forward and
backward propagation matching for registering the sparse
set of landmarks for three anatomical levels inside the brain.
The rest of the pixels are registered using a TPS algorithm.
Wu et al. [28] used a similar hierarchical approach for regis-
tering a free breathing CT with 4D-CT lungs. Landmarks in
the blood vessels were acquired using a seed-growth-based
segmentation algorithm and registered using a single resolu-
tion L2 norm cost function minimization. The cost function
did not include the intensity values directly but included the
local morphology. Once the landmarks were registered, the
rest of the lungs were registered using TPS algorithm.
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Validation of registration methods

Validation of 4D-CT registration methods is pivotal in quan-
titatively representing the accuracy in representing the vol-
umetric lung motion. Quantitative measures such as TRE,
Gross Tumor Volume, Jacobian value, and inverse consis-
tency error have been used for validating registration algo-
rithms. The number of datasets used in each of the valida-
tion procedure varied from 1 end-inspiration end-expiration
pair to 13 4D-CT datasets. A seminal comparison study is
presented by Vik et al. [29] to give some validation per-
spective between four different classes of registration meth-
ods, point-based tracking, surface-based tracking, parametric
volume-based registration, and nonparametric volume-based
registration using 10 end-expiration and end-inspiration CT
datasets. From the focus of radiation oncology, the study
showed that the surface-based registration is slightly more
accurate than the other registration methods. From a valida-
tion perspective, it was shown that the TRE-based estima-
tion of the dose validation and inverse consistency together
was a satisfactory measure for representing the registration
accuracy. Additionally, Murphy et al. [14] discuss the accu-
racy of the landmarks with the mean inter-observer difference
shown to be at least 2 ± 1 mm. Variations in the accuracy are
shown as a function of the number of resolutions used and the
number of steps involved in the stochastic gradient descent
method.

Methods and materials

4D-CT acquisition

Collection of data includes five studies. These are the high-
resolution CT scan, 4D-CT, inhalation breath-hold, normal
breathing scan, and exhalation breath-hold. Typically, the
selection of scan region is dependent on tumor volume and
treatment location. For lung, the entire lung volume was
acquired. The CT studies were acquired with a pitch of 1.0
and reconstructed in 3 mm slices (1 mm for high resolution
scans). The technique selected was the standard chest pro-
tocol on a Philips 16-slice Brilliance� CT scanner. Gating
was performed with the bellows system, and the phases are
selected through automatic increments of 10 % after the user
selects the maximum inspiration and end-expiration points
of the respiratory cycle.

Landmark intensity variation studies

To investigate the intensity variation in a 4D-CT dataset,
a clinic expert manually picked 60 landmarks from each
phase of the 4D-CT dataset of a given subject and corre-
lated their HU values. The intensity variations of a set of five

Fig. 1 Landmark intensity variation for landmarks in the left and right
lung is shown for five landmarks

(among the 60) landmarks are illustrated in Fig. 1. It shows
that HU value of a given landmark across different respira-
tory phases is not constant. In addition, no specific pattern
of changes in the HU value was observed. Thus, registra-
tion methods that use model-guided estimations of intensity
variations [16] may not be applicable with such datasets.
To obtain an accurate image-based registration of 4D-CT
lungs with optical flow method, the data needed to be con-
ditioned in such a way that the HU values of all anatomical
features inside the lung be consistent across the respiratory
phases.

4D-CT Lung segmentation

In our approach, we employed multiple anatomical levels,
as discussed in “Anatomy level based registration” section,
to improve displacement estimation accuracy for voxels that
intensity changes. In our approach, we segmented a 3D-CT
lung data at multiple anatomical levels based on the anatomy
features, as shown in Fig. 2, with all feature points on the
same anatomical level assigned to a consistent HU value.
The multi-level lung anatomy in our approach was segmented
into surface contour, blood vessels, and parenchyma regions.
The blood vessel region was segmented into multiple levels
according to user specification. Columns of Fig. 2 illustrate
four anatomy levels (blood vessel region was further seg-
mented into two levels). Every successive level also includes
the anatomy of its previous level with its intensity retained
from its previous anatomy level.

Figure 3 shows a segmentation comparison of a left lung
CT slice between the two approaches. In the first approach,
an intensity threshold was investigated [30]. This was fully
automatic approach in which a normalized intensity value
was used to separate the blood vessels into multiple levels.
Canny edge detector was applied before this segmentation
step to obtain the anatomy outline. In the second approach,
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Fig. 2 The accumulated anatomical levels of the lungs, segmented by
intensity thresholds approach (a–d), and seed-based region-growing
algorithm (e–h). The anatomical levels are the a, e Lung surfaces; b,

f Lung surfaces and large blood vessels; c, g Lung surfaces, large and
small blood vessels; d, h the whole lungs

Fig. 3 Comparison between automatic segmentation and semi-automatic segmentation (seed-growing) on 1 subject CT slice. a Original CT data,
b segmented by HU thresholds only c segmented by Seed-growing method from multiple manually placed seeds

a semi-automatic seed-based region growth algorithm cou-
pled with a hessian filter was investigated to obtain the blood
vessel morphology. The locations of one or more seeds rep-
resenting the blood vessels were selected on each respiratory
phase of a 4D-CT dataset. Using a Hessian filter coupled with
a user-defined threshold range, the entire vessel anatomy was
segmented. The anatomy was further segmented into multi-
ple levels using blood vessel radius thresholds.

For each of the segmentation approach, the top level (lung
surface contour) was segmented from the rest of the lung
by its geometry feature—any voxels on the surface of the
lung belongs to this anatomical level. The middle anatomical
levels (blood vessels) stood out from the bottom anatomy
level (parenchyma) by the brighter intensity value. Finally,
we unified intensity of a given segmented anatomical level
into a constant value.
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Proposed optical flow framework

Optical flow registration is based on the observation that the
object intensity remains the same during the motion. There-
fore,

I (x, y, z, t) = I (x + δx, y + δy, z + δz, t + δt). (1)

Since optical flow registration also assumes the displace-
ment to be small, the relation of displaced location to the orig-
inal location is unveiled by applying Taylor Series Expan-
sion:

I (x + δx, y + δy, z + δz, t + δt) = I (x, y, z, t)

+∂ I

∂x
δx + ∂ I

∂y
δy + ∂ I

∂z
δz + H.O.T. (2)

By ignoring higher order terms (H.O.T.), according to
Eq. (1),

∂ I

∂x
δx + ∂ I

∂y
δy + ∂ I

∂z
δz = 0. (3)

Divide by δt on both side of the Eq. (3),

Ix u + Iyv + Izz + It = 0. (4)

Ix Iy Iz and It and in Eq. (4) stand for the partial derivative
of intensity along x, y, z and time dimension separately. At
this point, three unknown variables u, v, and w, but only one
equation is the optical flow vector. Horn–Schunck method
adds an extra constrain to Eq. (4) to solve optical flow motion,
which minimize energy function

E =
∫∫ [(

Ix u + Iyv + Izw + It
)2 + α2

(
|∇u|2

+ |∇v|2 + |∇w|2
)]

dxdydz. (5)

The second part of the function is a smoothness term, α2

adjusts the weight of smoothness in the global energy func-
tion. This function can be minimized with Euler-Lagrange
equations.

The displacement for one level is then projected into the
next level using TPS as follows: Let x be a vector that repre-
sent the voxels at the current anatomical level, who registra-
tion is to be performed. Let X be a vector that represents the
voxels at the previous anatomical level. The initial displace-
ment for x is computed as

u(x(i)) =
n∑

j=0

φ(‖x (i) − X ( j) ‖)u(X ( j)), (6)

where u stands for estimated initial displacement and φ repre-
sents the TPS interpolation function. The displacement com-

puted in Eq. (6) is taken as initial displacement for the optical
flow analysis for the current level.

It can be seen that the multi-resolution registration of
each anatomy level also enables the registration errors in that
anatomy level to have minimal effect on the next anatomy
level. Once an anatomy level is registered, the registration
result is applied to the next anatomy level at the lowest image
resolution thereby introducing negligible error for the next
anatomy level.

It is to be noted that for an iterative registration algo-
rithm such as the optical flow, the accuracy of the final results
strongly rely on the initial value of the displacement [24]. In
our proposed work, TPS enabled the displacement computed
from one level of anatomy to be propagated to the volume
at the next level of anatomy as initial displacement. It is to
be noted that the optical flow’s smoothness constraint was
different from the proposed TPS usage. The final registra-
tion was an iterative combination of the multiple anatomical
levels and resolutions coupled with TPS, which is the key
contribution of the paper.

Workflow

The 3D lung volumes were loaded into the proposed registra-
tion system pair by pair. The process is described in Fig. 4.

Fig. 4 Flowchart of the proposed MLMR registration method
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The 3D volumes at the bottom anatomical level were first
computed by rescaling the slices of each volume for each
anatomical representation to the lowest resolution. Within
each resolution level, the volumes were registered using
a multi-anatomical level Horn–Schunck-based optical flow
approach. To minimize energy function in Eq. (5) by Horn–
Schunck method, the displacement of each voxel was esti-
mated and updated iteratively until global displacement con-
verged or the maximum number of iterations was reached. In
each iteration, the displacement was computed as weighted
sum of displacements from neighbor voxels, where smooth-
ness factor controlled the magnitude of weight imposed to
the point of interest and neighborhood radius defined the
range of nearby voxels involved in the calculation. We set
smoothness factor to 8.0, neighborhood radius to 5, and use
150 as the maximum number of iterations. We found this
parameter combination achieved best results for the 4D-CT
data we tested. Motion field was first computed based on
the pair of surface contours in the lowest resolution. At this
stage, all the voxels except those on the surface contour (the
lowest level of anatomical representation) were zeros. TPS
interpolation was applied to the motion field so that voxels
surrounded by the surface contour can have some interpo-
lated motion, which was closer to the actual value. Such
motion field was carried as initial motion field to motion
computation of the second anatomical level volumes, which
now included surface contour and large blood vessels. Care
was taken to ensure that the motion field is computed only
for the large blood vessels. The motion field was then itera-
tively updated until the top level of anatomy volumes, which
included the surface boundary, large and small blood vessels,
and the parenchymal region, was computed by optical flow
method and then smoothed by TPS. By this time, the compu-
tation of motion field of the volume in lowest resolution was
completed. Then, the lung volumes and anatomy maps were
rescaled into higher resolution, and the multi-level optical
flow registration was performed. Such motion field was iter-
atively updated until the highest (or original) resolution of
the volume was processed. The displacement of each voxel
inside the lung was contained in the last updated motion
field.

It can be observed that for any given anatomical voxel at a
given anatomical level, only its neighborhood points on the
same or higher anatomical level contribute to its displacement
computing. For instance, when the weighted sum of a voxel in
a large blood vessel region was computed, the nearby voxels
from either the lung surface contour or the large blood vessel
were included, while the rest of neighborhood voxels had no
contribution to the voxel being computed. By applying this
constraint, errors from low accuracy voxels did not spread
to the rest of the region. Thus, the overall accuracy of the
method was improved.

Implementation

The automatic system was implemented in MATLAB with
OsiriX and ImageJ as segmentation tools. The lung vol-
umes were then exported as CT slices. ImageJ software was
then used to semi-automatically find lung contours in each
slice and all lung blood vessels by edge detection tools.
The intensity unification was performed by setting each seg-
mented anatomical category to a certain intensity value. For
instance, voxels on surface contours were set to 255, voxels
on large blood vessels are set to 180, small blood vessels
are set to 100, and parenchyma regions are set to 0. Such
anatomical category marks were saved in images as anatomy
maps. The whole lung 4D-CT volume data were read and
semi-automatically segmented by two medical experts using
open-access segmentation software OsiriX. Validation of the
segmentations was done by another clinician using Philips
Pinnacle3 system. The segmentation of the whole lung and
its validation were simplified by the fact that the lung bound-
aries have a very high contrast with its surrounding anatomy.

Validation method

For validation of the optical flow registration method, we
used the multi-resolution optical flow registration by Guer-
rero et al. [10], free-form registration method, inverse consis-
tent demons method, and multi-resolution optical flow reg-
istration [31]. The registration methods used for this vali-
dation study estimated the displacement map from the end-
expiration phase to each of the subsequent phases up to the
end-inhalation phase. To establish a ground truth, a set of 60
landmarks, which were the vessel bifurcations, was first man-
ually picked by a clinician through all of the 3D volumes for
the respiratory phases. The landmarks’ motion estimations
using each of the registration methods were then compared
with the ground truth motion. The registration accuracy was
quantified using TRE and the inverse consistency error with
lower error values representing better registration accuracy.
The Gamma test has two components: the HU difference
and the distance to agreement. The Γ criteria for a particular
voxel are found through minimizing Eq. (5), by sampling the
reference distribution in the volume surrounding the evalu-
ated voxel [32].

Γ =
√

|re − rr|2
�r2 + (De − Dr)

2

�D2 , (7)

where �r and �D are the distance to agreement and inten-
sity (HU) difference criteria, re and De are the position and
HU values at the evaluated pixel, and rr and Dr are the posi-
tion and HU value of the reference voxel. The acceptance
criteria for the Gamma test were set to 1 % intensity differ-
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ence range and 2 mm3 neighborhood range. To account for
intensity fluctuations caused by the airflow during the breath-
ing, the multi-level anatomy was used for each landmark. For
instance, for a landmark on the vessel bifurcation, an anatom-
ical level that included the lung boundary and blood vessels
was only used. The Γ criteria are well within clinical tol-
erances [33] and were also large enough to avoid statistical
aberrations.

Results

In this section, we first present registration results using our
proposed method. It is followed by a discussion of the val-
idation studies. Figure 5a, c represents as overlapping 2D
slices of left lung and right lung at end-exhalation (red) and
end-inhalation (green) stages. The misalignments between
each of the slices are depicted in red and green colors. While
the red region represents the features that are in the end-
exhalation and not in end-inhalation, the green region rep-
resents the features that are in the end-inhalation and not in
the end-exhalation. Overlapping the warped image with the
target image where the red and green colors are not seen
represents a correct image registration. Figure 5b, d repre-
sents the overlapping 2D slices of the left and right lung with
the end-inhalation lung volume warped using the registration
results. It can be visually seen that the registration error is
minimal for each of the case.

Validation studies are presented for a set of 4D-CT datasets
with each datasets having 60 landmarks for each of the lung
volumes. Additionally, to quantify the usage of such a reg-
istration, we used two comparisons: (a) we investigated the
multi-level registration without the inclusion of TPS as a
comparison and (b) we varied the number of anatomical lev-
els to observe the improvement in the registration results.

Table 1 shows the TRE estimation for a set of five sub-
jects when the landmarks are tracked between 0 % inhalation
to 30 % inhalation phase, 0–60 % inhalation phase, and 0–
100 % inhalation phase, respectively; 0 and 100 % inhalation
means the beginning and end of inhalation cycle, respec-
tively; 30 and 60 % inhalation were the respiratory phases in
the middle of inhalation cycle. The percentages of air volume
intake were provided by the gated CT acquisition system.
Four different registration approaches were investigated in
conjunction with three segmentation methods. The “No Seg-
mentation” method represents the optical flow-based regis-
tration method without anatomical segmentation involved,
to give quantitative comparison of the anatomical segmen-
tation contribution in the purposed MLMR method. In the
first case, three levels of anatomical representation were used
along with the TPS. The three levels of anatomical represen-
tation for the three subjects included the lung surface, lung
surface together with the large blood vessels, and the com-
bination of lung surface, large and small blood vessels. In
this case, the HU values in the parenchymal region were uni-
fied to 0, and therefore, parenchymal region was not directly
included during the optical flow computation. It can be seen
that for the first subject, the TRE had a mean of 3.00 mm with
a standard deviation of 3.33 mm for the case of 0 % inhala-
tion volume registered with 100 % inhalation volume. For
the second subject, a mean TRE of 2.84 mm with a standard
deviation of 2.27 mm was obtained. When the parenchymal
region is considered as an additional anatomical level (for
four total anatomical levels), HU values in the parenchy-
mal region were counted without unifying to 0,_along with
TPS, the TRE increases to a mean of 4.59 mm with a stan-
dard deviation of 4.49 mm for the first subject and to a mean
of 3.76 mm with a standard deviation of 2.71 mm. This was
because of the low contrast in the intensity for the parenchy-
mal region. When the registration was performed without the

Fig. 5 The 2D lung slices of two right lung volumes at end-expiration
(red) and end-inspiration (green) are shown a before and b after the reg-
istration. The 2D lung slices of two left lung volumes at end-expiration

(red) and end-inspiration (green) are shown c before and d after the
registration. The misalignments for each of the case are depicted in red
and green colors
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Table 1 TRE comparison of MLMR with different configuration and multi-resolution method (unit: mm)

Segmentation
method

Optical flow reg-
istration method

Respiratory
phase pair

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Mean STD Mean STD Mean STD Mean STD Mean STD

Intensity threshold MLMR 3 level 0–30 % inhalation 1.84 1.17 2.06 1.50 1.81 1.41 1.58 1.09 1.39 1.0

MLMR 4 level 1.83 1.27 1.96 1.84 1.55 1.45 1.49 0.98 1.61 0.8

MLMR 4 level no 1.95 1.22 2.53 1.94 1.85 1.40 1.84 1.58 2.12 1.48

Single-level seed-growing algorithm MLMR 3 level 2.00 1.29 2.35 1.47 1.91 1.36 2.38 1.17 2.38 0.72

MLMR 4 level 1.98 1.27 2.09 1.73 1.68 1.45 1.78 1.2 1.91 0.86

MLMR 4 level no 2.03 1.38 2.57 1.79 1.74 1.53 2.07 1.75 2.15 1.66

Double-level seed-growing algorithm MLMR 3 level 2.02 1.36 2.42 1.40 1.83 1.33 2.26 0.97 2.31 1.34

MLMR 4 level 1.96 1.17 2.26 1.73 1.66 1.39 1.27 1.42 1.36 1.53

MLMR 4 level no 2.23 1.30 3.07 2.02 1.91 1.34 2.35 1.41 2.67 1.89

No segmentation Multi-resolution 2.03 1.32 2.30 1.84 1.68 1.37 1.56 1.61 1.65 1.21

Intensity threshold MLMR 3 level 0–60 % inhalation 2.16 1.66 2.31 1.86 2.67 3.23 3.08 3.7 2.69 3.7

MLMR 4 level 2.70 2.18 2.76 2.33 3.77 3.97 3.83 4.31 3.87 3.96

MLMR 4 level no 3.55 2.88 3.09 2.75 4.11 4.24 4.42 4.13 4.51 4.26

Single-level seed-growing algorithm MLMR 3 level 2.62 1.80 3.04 2.03 3.30 3.09 3.56 2.98 3.65 2.57
MLMR 4 level 3.15 2.40 2.79 2.13 4.08 4.27 3.75 4.43 3.58 4.31

MLMR 4 level no 3.64 2.82 3.46 2.54 5.20 4.99 4.83 5.32 5.3 5.41

Double-level seed-growing algorithm MLMR 3 level 2.55 1.79 3.00 1.98 3.43 3.02 3.34 3.48 3.39 3.65
MLMR 4 level 3.23 2.44 2.84 2.19 3.76 3.89 3.48 4.2 3.68 4.59

MLMR 4 level no 3.54 2.71 3.38 2.95 5.33 5.02 5.31 4.84 4.97 4.95

No segmentation Multi-resolution 4.03 3.02 3.40 2.72 4.96 4.35 4.51 4.81 4.79 4.41

Intensity threshold MLMR 3 level 0–100 % inhalation 3.00 3.33 2.84 2.27 2.78 3.25 2.93 2.85 2.44 2.44

MLMR 4 level 4.59 4.49 3.76 2.71 4.89 4.28 4.6 4.77 4.52 5.21

MLMR 4 level no 5.34 4.17 4.25 3.10 5.10 4.54 5.02 4.18 4.79 4.6

Single-level seed-growing algorithm MLMR 3 level 3.62 3.35 4.19 2.55 4.30 3.08 4.34 3.14 4.75 2.89

MLMR 4 level 4.98 4.25 4.66 2.65 5.86 4.39 6.23 4.8 6 4.51

MLMR 4 level no 5.74 4.63 5.05 3.22 7.50 4.87 7.8 5.31 8.29 5.4

Double-level seed-growing algorithm MLMR 3 level 3.53 3.33 4.33 2.66 4.32 3.10 4.27 2.86 4.7 2.65

MLMR 4 level 4.73 4.08 4.24 2.51 5.43 4.08 5.85 3.98 5.76 3.73

MLMR 4 level no 5.58 4.68 5.62 3.58 7.77 5.20 7.88 5 8.24 5.45

No segmentation Multi-resolution 6.67 4.82 4.80 3.32 6.90 5.46 6.65 5.28 6.52 5.65

usage of TPS, the mean TRE for the first subject was 5.34 mm
with a standard deviation of 4.17 mm and the mean TRE for
the second subject was 4.25 mm with a standard deviation of
3.10 mm. Thus, for registering the parenchymal region, the
thin-plate splines showed an improved accuracy as compared
to optical flow registration. When compared with the results
obtained from multi-resolution optical flow, the mean TRE
for the first subject was 6.67 mm with a standard deviation of
4.82 mm and mean TRE for the second subject was 4.80 mm
with a standard deviation of 3.32 mm. Similar results were
observed for all the three subjects supporting the observation
that the proposed MLMR optical flow registration with three
levels of anatomy provides a TRE <3 mm.

The mean and standard deviation of the TRE is tabulated
in Table 2 for each of the methods considering all the lung
volumes of each of the 4D-CT datasets. When look into TRE

of subject 5, it can be seen that the MLMR optical flow with
3 levels of anatomy provides a mean TRE of 2.25 mm. When
compared with multi-resolution optical flow method with the
TRE of 6.93 mm and non-optical flow methods (free-form
and inverse consistent demons) with the TRE of 16.90 and
8.11 mm, respectively, the proposed method yielded an accu-
rate 4D-CT registration. Such variations in the result can
be attributed to the landmark intensity inconsistency issue
inherent in the 4D-CT datasets. In addition, although all the
registration methods were used on MATLAB, we imple-
mented MLMR and multi-resolution registration methods
and obtained the implementation of free-form and inverse
consistent demon methods through DIRART software suite
[31].

For a qualitative evaluation of the lung inhalation and
exhalation, we performed a Jacobian analysis. The mean of
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Table 2 TRE comparison for MLMR and other methods for 10 volumes of 4D-CT datasets (unit: mm)

Method Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Mean STD Mean STD Mean STD Mean STD Mean STD

MLMR 3 levels TPS 2.28 1.25 2.25 1.56 2.93 2.78 1.79 1.44 2.25 2.21

MLMR 4 levels TPS 3.15 3.68 2.94 2.05 4.51 3.72 2.50 2.31 3.82 3.02

MLMR 4 levels no TPS 4.25 4.05 3.61 2.37 4.93 3.99 3.80 2.99 5.92 3.52

Multi-resolution optical flow 5.06 4.43 4.35 3.50 5.40 4.34 4.68 3.60 6.93 3.81

Free-form deformation 22.96 5.68 10.89 4.44 16.50 5.35 11.28 5.00 16.90 6.87

Inverse consistent demons 11.19 3.98 5.13 2.60 7.41 4.93 5.13 4.46 8.11 4.35

Table 3 Mean of the Jacobian comparison for the MLMR and other registration

Subject Lung
side

Inhalation
phase (%)

MLMR optical
flow 3 levels
TPS

MLMR optical
flow 4 levels
TPS

MLMR optical
flow 4 levels
no TPS

Multi-resolution
optical flow

Free-form
deformation
method

Inverse
consistent
demons method

Subject 1 Left 0–30 1.0232 1.0282 1.0289 1.034 1.01 0.9714

0–60 1.142 1.1409 1.1394 1.1412 1.0259 0.9596

0–100 1.1898 1.1907 1.1961 1.2297 1.0168 0.9665

Right 0–30 1.0312 1.0391 1.039 1.0458 0.8965 0.958

0–60 1.1277 1.1397 1.1449 1.2144 0.95 0.9256

0–100 1.1715 1.2092 1.2455 1.2921 0.98 0.9505

Subject 2 Left 0–30 0.97 0.9569 0.9529 0.9658 1.0927 1.036

0–60 1.044 1.0525 1.0512 1.12 0.9972 0.9987

0–100 1.0598 1.0872 1.0842 1.6526 0.997 1.0165

Right 0–30 0.9722 0.9724 0.9734 0.9571 1.008 1.0348

0–60 1.0391 1.0673 1.0661 1.065 0.9092 0.9802

0–100 1.0477 1.0788 1.0782 1.064 0.94 0.9733

Subject 3 Left 0–30 1.009 1.0211 1.02 1.0236 0.9557 0.9724

0–60 1.0693 1.131 1.1302 1.1153 0.9613 0.9214

0–100 1.0967 1.183 1.1906 1.2932 0.9646 0.9307

Right 0–30 1.0199 1.0224 1.0187 1.0268 0.98 0.9798

0–60 1.0759 1.1319 1.1328 1.1328 0.8929 0.9304

0–100 1.1054 1.1693 1.1698 1.5978 0.9078 0.9159

Subject 4 Left 0–30 1.012 1.0532 1.05 1.0623 1.043 1.0653

0–60 1.093 1.163 1.1633 1.1853 1.082 1.0993

0–100 1.117 1.209 1.2226 1.3232 1.134 1.122

Right 0–30 1.023 1.0532 1.0212 1.0668 1.002 1.043

0–60 1.0799 1.1673 1.1658 1.1248 1.075 1.0802

0–100 1.1402 1.1924 1.1933 1.6278 1.143 1.129

Subject 5 Left 0–30 1.01 1.0421 1.04 1.05 1.037 1.074

0–60 1.081 1.147 1.143 1.1673 1.094 1.135

0–100 1.102 1.189 1.2114 1.3193 1.145 1.167

Right 0–30 1.011 1.0416 1.017 1.0475 1.002 1.067

0–60 1.0659 1.1527 1.1523 1.1195 1.114 1.096

0–100 1.1202 1.1811 1.1873 1.3245 1.178 1.125

the Jacobian was computed using DIRART software suite
and is tabulated in Table 3 for each of the methods. The
Jacobian determinant value was positive and increased as
the lung volume increased for each of the methods. However,

the inconsistent intensity value introduced errors in the non-
optical flow methods’ displacement estimation that caused
inconsistency in the correlations of the Jacobian value. The
multi-resolution optical flow method yielded a better consis-
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Table 4 Inverse consistency error for the proposed MLMR optical flow with three levels of anatomy and TPS-based propagation (unit: mm)

Inhalation Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Left Right Left Right Left Right Left Right Left Right

0–30 % 1.43 1.23 1.11 1.08 0.73 1.18 1.12 0.97 1.67 1.04

0–60 % 2.89 2.73 1.51 1.15 2.35 1.9 1.48 1.02 1.83 1.19

0–100 % 3.58 3.3 2.37 1.74 3.1 2.2 2.24 1.37 2.02 1.67

Average 2.63 2.42 1.66 1.32 2.06 1.76 1.61 1.12 1.84 1.30

Fig. 6 2D slice representation of the left lung at a end-exhalation and b end-inhalation

Table 5 Percentage voxels that fail the gamma statistics

Inhalation Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Left Right Left Right Left Right Left Right Left Left

0–30 % 1.94 0.40 1.69 0.72 0.17 1.29 0.24 1.50 1.62 1.94

0–60 % 2.50 1.12 2.65 1.67 0.58 2.25 0.57 2.30 1.99 2.50

0–100 % 2.92 1.27 2.77 1.68 1.51 3.14 1.16 2.59 2.44 2.92

Average 2.45 0.93 2.37 1.35 0.75 2.23 0.66 2.13 2.02 2.45

tency in the linear correlations of the Jacobian value because
of its smoothening component. The proposed method yielded
results that showed a more consistent linear increase in the
Jacobian value.

Table 4 shows the inverse consistency results for the five
4D-CT datasets. In this context, the term consistency refers
to the difference between the positions of the source lung
volume and the target lung volume that was warped using the
inverted displacement vectors that were originally calculated
to warp the source lung volume to target lung volume. A three
level anatomy with TPS for parenchymal registration was
used for this analysis. Two displacements for each subject
are computed registering the source 3D-CT with target 3D-
CT and registering the target 3D-CT with the source 3D-CT,
and then the two displacements are compared to calculate the
consistency error. It can be seen that the proposed method has
a consistency error in the range of 0.7–3.6 mm.

Figure 6 presents the gamma results (discussed in “Valida-
tion method” section) for a lung slice. Figure 6a, b represents
the 2D anatomy at end-exhalation and end-inhalation breath-
ing phases. Figure 6c presents the voxel distribution that fail
the gamma criteria when end-exhalation and end-inhalation
are used. Figure 6d presents the voxel distribution that fails
the gamma criteria when the end-exhalation is warped using
the registration results and compared with the end-inhalation
breathing phase image. It can be seen that very small number
of voxels fails the criteria after registration. Table 5 presents
the gamma statistics between two 4D-CT volumes. In each
case, the lung volume at 30 % inhalation phase is warped
using the registration results to fit the lung volume at 0 %
inhalation phase. Results show that using the proposed reg-
istration framework, the percentage of voxels in the warped
lung volume that fail the gamma criteria is <3 %. The aver-
age number of voxels that failed the gamma criteria was also
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Table 6 Run-time statistics for a pair of respiratory phases (Data size: 512 × 512 × 128 voxel)

Machine configuration MLMR configuration Time (min)

CPU (GHz) RAM (GB) Smoothness Neighborhood Iteration

Intel Core 2 Duo 2.16 4 8.0 5 voxels 150 20

Intel Core i5 2.6 4 8.0 5 voxels 150 17

<3 %. The 3 % mismatch in the gamma criteria was a result of
the inconsistencies in the intensity of corresponding voxels
between the source and the target volumes.

Table 6 presents the run-time statistics. The MATLAB
implementation of the proposed algorithm took approxi-
mately 20 and 17 min on two different configurations, respec-
tively.

The voxels in this 2D slice that failed the criteria are col-
ored in white, while the voxels that passed the Γ criteria are
colored in dark. The gamma statistics before and after the
registration are shown in (c) and (d), respectively.

In summary, the usage of MLMR optical flow with three
levels of anatomy and TPS to propagate the results, from one
anatomical level to another, yielded a minimal TRE for each
of the five 4D-CT volume datasets, as well as the overall
dataset. Additionally, the maximum landmark error was also
shown to be minimal as compared to both multi-resolution
optical flow method as well as non-optical flow methods.
The inverse consistency of the displacements was also shown
to be <2 mm. Finally, the gamma statistical analysis also
supports the clinical applicability of the registration method
discussed in this paper. Such result shows that the proposed
method facilitates a 4D-CT registration with higher accuracy.

Discussion

In this paper, we present a multiple anatomical levels and
multiple resolutions optical flow method for registering 4D-
CT lung respiratory phases. The proposed method enabled
us to compute the volumetric lung displacement, a key para-
meter in estimating the 3D elasticity of each subject’s lung-
thereby allowing the usage of physics-based volumetric lung
deformations during lung radiotherapy.

Inconsistent intensity for lung anatomical structures in a
4D-CT image may have been brought by lung motion and
large air volume change inside the lung during respiration.
Such variations may be very high as observed in the case
of 4D-CT lung image datasets acquired at our institution
for non-small-lung cancer subjects. In the proposed work,
we addressed the issue by unifying the intensity of a spe-
cific sub-anatomy to a constant value on all lung respira-
tory phases. The anatomical segmentations were performed
using two approaches, namely the intensity gradient thresh-

old approach and seed-based region growth algorithm. The
proposed registration method was both multi-anatomy level
and multi-resolution, i.e., the final displacement of the entire
lung volume at one resolution level is propagated as initial
displacement for the next resolution level.

In 4D-CT image datasets, it can be observed that voxels
representing different lung sub-anatomy have feature inten-
sities in the same range or close to noise intensity. Displace-
ment estimation in such regions using 4D-CT registration
techniques may be inaccurate when intensity-based regis-
tration methods are employed. However, features in lung
contour and regions around blood vessels were quite easily
distinguished, as they tend to have high intensity contrast.
Displacement estimations were accurate in these regions.
The multi-level nature of the proposed registration method
first groups voxels into several anatomical levels based on
the lung sub-anatomic representation. When compared with
multi-resolution optical flow, the proposed method was able
to better account for non-constant intensity of landmarks and
low contrast that are inherent in the input dataset.

The usage of TPS along with the optical flow also raised
the issue of whether the optical flow registration be used for
registering parenchymal regions, where the landmark inten-
sity contrast is very low. Results discussed in the proposed
work (Table 1) quantified the effect of such errors from one
resolution level to another by computing the final validation
difference. It can be seen that when the TPS was not used, the
registration error was higher as compared to the case when
the TPS was used without making any modifications to the
optical flow smoothening constraint.

The validation study of MLMR registration method
involved two clinical experts to carefully mark 60 landmarks
for each respiratory phase in the lung. We then compared
with other registration methods especially the methods from
DIRART package. As registration accuracy highly depends
on registration parameter setting, patient breathing displace-
ment pattern, and 4D-CT image quality, huge registration
accuracy differences were observed for the same registration
method over multiple datasets. For instance, while optical
flow registration method achieves a TRE of 1.6 ± 0.9 mm
with datasets acquired in Latifi et al. [34], it presented a
higher registration error with our datasets. Public datasets
from POPI-model [35] or EMPIRE10 framework [36] enable
a common platform to investigate the registration accuracy
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as a relation to the registration parameters. Future work will
investigate the optimal registration parameter set for each
registration mechanism and how it will be applicable for 4D
CT datasets generated by other non-public datasets.

The HAMMER algorithm has been proposed as a hierar-
chical approach for brain image registration [26,27], but dif-
fers from the proposed algorithm. From implementation per-
spective: (a) the HAMMER algorithm used the forward and
backward propagation matching for registering the sparse set
of landmarks for three anatomical levels inside the brain. The
rest of the pixels were registered using TPS. Our proposed
method registers anatomical levels from sparse to dense using
a multi-resolution optical flow approach. On each resolution
level, TPS was employed only to propagate the displace-
ment to carry to the next resolution level; (b) The HAM-
MER algorithm has been employed with three fixed anatom-
ical levels. Our proposed method addressed the knowledge-
gap of how many anatomical levels were required for an
improved registration. We have employed three and four
anatomical levels to address the question as to whether the
accuracy improves with an increase in the number of lev-
els. Additionally, we have presented results in “Results” sec-
tion on whether the accuracy changes when the TPS was
not employed. Thus, the proposed work also addressed a
key knowledge-gap on the relation between the number of
hierarchical levels required for the registration and the accu-
racy of the registration itself. From medical image perspec-
tive: (a) The HAMMER algorithms have not been investi-
gated by peers for the 4D-CT lung registration problem to
our knowledge; (b) The lung anatomy, which is the focus of
our problem, expands and contracts during breathing. Our
registration method focused on registration of four levels
of landmarks taking into account the presence of breathing-
induced artifacts. Thus, the proposed method shows feasibil-
ity of using hierarchical attribute-based registration for lung
datasets when the local anatomy undergoes changes from one
air volume to another.

The estimated lung displacement was observed to be het-
erogeneous from one respiratory phase to another. In other
words, the amount of voxel displacement varied for a given
voxel from one respiratory phase to another. Additionally, it
can also be seen that the displacement itself varied from one
4D-CT dataset to another. Such variations in the lung dis-
placement further emphasized the need for subject-specific
physics-based deformation models.

Future work will better shed light on the radiotherapy
treatment efficacy and the accuracy of the lung registration
on a subject-by-subject basis. This will be achieved in two
steps. First, from a radiotherapy perspective, the registration
results from three variants of the proposed registration frame-
work and the method discussed by Guerrero et al. [10] will be
used to simulate the radiation dose delivery on three differ-
ent subjects. The radiation dose delivery simulation method

that takes into account the subject-specific lung motion has
been previously discussed in [37]. Results in terms of the
dose-volume histograms (DVH) for the dose delivered to
the tumor will show the significance of the 1–3 voxel error
on the overall treatment dose delivered. Such an analysis
will show whether significant difference in the DVH of the
dose simulation is observed when the displacement obtained
from the different registration methods is used. Such differ-
ences will also suggest whether a small improvement in the
registration accuracy can be observed to be significant for
radiotherapy-based clinical cases. Second, the registration
results will be used to estimate the Young’s Modulus (YM),
a tissue elastic property, associated with each lung voxel.
The method of estimating the YM for each voxel has been
previously discussed in Santhanam et al. [38]. Results will
further show whether subtle variations in the registration can
lead to significant variations in the YM associated with each
voxel. Developing such physics-based models also enables
to iteratively improve 4D CT image registration by including
physics-based phenomenon such as airflow inside lungs and
interface slippage, both of which can significantly improve
the 4D CT lung registration process.

The proposed method was based on the segmentation of
the lung anatomy at different levels of representation. The
accuracy of the proposed method was thus dependent upon
the accuracy of the segmentation procedure. In the proposed
work, we have employed an open-access image processing
software, OsiriX, based automatic segmentation of the lung
anatomy and a seed-based region growth algorithm for man-
ual segmentation for the lung anatomy. The effort involved
in such a multi-level anatomical segmentation was minimal
for lung anatomy. However, complex model-based segmen-
tations can be used to further improve the segmentation accu-
racy and subsequently the registration accuracy. Future work
will focus on the usage of different automatic and manual
segmentation methods and their effect on the accuracy of
the registration procedure. In addition, future work will also
focus on minimizing the changes in the voxel intensity of
landmarks during image acquisition without exposing the
subject to more radiation during imaging.

The inverse consistent analysis was only used as one of
the metrics for evaluating our registration accuracy. In the
future work, we will include the inverse consistency on each
anatomy level in our registration method as well. Such a reg-
istration would significantly increase the registration com-
putation time. We will employ state-of-the-art GPU cluster
to improve the computation speed and better facilitate such
a registration mechanism.

For performance comparison purposes, we used a multi-
resolution optical flow, free-form method, and inverse con-
sistent demons methods. Results show variations in the TRE
for each of the methods. Also, it can be seen that meth-
ods that were not based on multi-resolution provide a larger
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TRE value as the variations in the voxel intensities from one
volume to another add more uncertainty in the registration
process. Additional validation metrics such as ICE and the
gamma statistical analyses showed that the proposed regis-
tration was able to achieve a registration accuracy that will
be applicable for radiotherapy needs.

Future work will focus on benchmarking the registra-
tion accuracy using lung datasets with minimal inaccuracies
and improving the accuracy using additional image-based
constraints such as multi-level contrast and physics-based
constraints such as airflow modeling. The use of graphics
processing units will also be investigated for addressing real-
time computational requirements.
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