IAEA Training Material on Radiation Protection in Radiotherapy

## RADIATION PROTECTION IN RADIOTHERAPY



#### Part 7: Facility design and shielding PRACTICAL EXERCISE

# Objectives of Part 7 - participants should

- Understand the underlying principles for the design of a radiotherapy facility
- Be familiar with the safety requirements for the design of radiotherapy facilities including interlocks, maze design and warning signs.
- Be able to calculate the shielding thickness required for a particular barrier



IAEA Training Material on Radiation Protection in Radiotherapy

# Part 7: Facility design and shielding



Practical 1: Calculation of shielding requirements for a megavoltage external beam treatment room

### Contents + Objective

- Understand the shielding requirements for a high energy megavoltage unit
- Perform calculations using information given in the lecture



# What Minimum Equipment is Needed?

- Paper, pocket calculator
- Whiteboard
- Handout and lecture notes
- (if possible a copy of NCRP report 151 and/or McGinley 1998)



### Scenario

 You have been called to assess the shielding requirements for a new linear accelerator. The bunker is shown on the next slide.



## **Primary shielding**

- The bunker shall house a dual energy linear accelerator with 4 and 10MV X Rays and 5 different electron energies
- Except for the door all shielding shall be done using ordinary concrete









## Workload for primary shielding

- Assume T = 2.5Gy at isocentre
- Assume 50 patients treated per day (conservative estimate) on 250 working days per year

W = 50 x 250 x 2.5 = 31250 Gy per year

- Allow for other uses such as physics, blood irradiation, total : 40000Gy per year at isocentre for primary beam
- As no statement was made about the energy to be used, assume 10MV



# Attenuation A required for primary beam shielding

Common assumptions for all locations

- Linac 10MV
- d<sub>ref</sub> = 1m (FAD = 1m)
- W = 40000Gy/year
- TVL<sub>concrete</sub>=40cm

- Assumptions depending on the location to be shielded
- Usefactor U
- Occupancy T
- distance d
- Design constraint P

 $\mathbf{A} = \mathbf{WUT} \ (\mathbf{d}_{\mathrm{ref}}/\mathbf{d})^2 / \mathbf{P}$ 



### Lateral beams: U = 0.25

- Location A, patient waiting: d=6m, P=0.3mSv/year T=0.25 averaged over a year
- $A = WUT (d_{ref}/d)^2 / P$ A = 232,000
- For concrete approximately 2.2m



### Lateral beams: U = 0.25

- Location B, other bunker: d=5m,
  - For patients: P=0.3mSv/y T=0.05 averaged over a year
  - For staff: P=20mSv/y, T=1
- $A = WUT (d_{ref}/d)^2 / P$ A = 67,000
- For concrete approximately 1.9m





### Beam pointing up and down

- Pointing down: U=1 but T=0 therefore, no shielding is required
- Pointing up: U=0.25, T in the room directly above = 0, however, there could be rooms even higher in the building. While distance may reduce the dose, there could be shielding requirements *e.g.* for an office on top of the storage area.



How much change would there be to the shielding requirements if 4MV instead of 10MV were used for all treatments?







#### Answer



 The difference in TVL between 10MV (40cm) and 4MV (30cm) photon beams is 10cm. For the approximately 5 TVL of material required, the shielding could be reduced by approximately 50cm if one can ensure only 4MV is used for treatment.



## Secondary shielding

- Leakage and scatter
- Workload for scatter similar to primary (40,000Gy/year)
- Workload for leakage higher (10x for IMRT patients)
- W<sub>conventional</sub> = 40 x 2.5 x 250 = 25000Gy/y

- W<sub>IMRT</sub> = 10 x 25 x 250 = 125,000Gy
- W<sub>total</sub> = 160,000Gy



### Quick reality check

- 160,000 Gy/year @ isocentre includes physics work.
- It means that every day about 640Gy are delivered. At a typical dose rate of 4Gy per minute this means the beam is on for 1.6 hours every day
- This can be verified by checking beam on time...



## Attenuation A required for leakage secondary beam shielding

Common assumptions for all locations

- Linac 10MV
- d<sub>ref</sub> = 1m (FAD = 1m)
- W = 160000Gy/year
- TVL<sub>concrete</sub>=45cm
- Usefactor = 1
- Leakage factor 0.002

Assumptions depending on the location to be shielded

Occupancy T

 $A = L WT (d_{ref}/d)^2 / P$ 

- distance d
- Design constraint P





#### **Attenuation A required**

- Location A' patient waiting: T=0.25, d=6m, P=0.3mSv
- Location B' bunker: T=0.05, d=5m, P=0.3mSv
- Location D parking: T=0.25, d=4m, P=0.3mSv
- Location E control: T=1, d=8m, P=0.3mSv

#### Rem : occupancy factors changed in NCRP 151



#### Attenuation A required

- Location A' patient waiting: T=0.25, d=6m, P=0.3mSv
  A = 7400
- Location B' bunker: T=0.05, d=5m, P=0.3mSv A = 2200
- Location D parking: T=0.25, d=4m, P=0.3mSv A = 16700
- Location E control: T=1, d=8m, P=0.3mSv A = 16700

Rem : occupancy factors changed in NCRP 151



### Scatter

#### More complicated calculation including the area of the beam at the scattering surface. In practice this is usually assumed to be 400cm<sup>2</sup> at the patient the angle of the scattered radiation In the present case, scatter can be conservatively approximated by being similar to leakage





## **Questions?**



#### Let's get started...

