

There are fo	1.1 I.1.4 C our distir s of par	INTF lassifica act forces ticles	RODUCTION tion of forces	in nature raction between
Force	Source	9	Transmitted particl	e Relative strength
Strong	Stro	ong charge	Gluon	1
EM	Ele	ctric charge	e Photon	1/137
Weak	We	ak charge	W ⁺ , W ⁻ , and Z	° 10 ⁻⁶
Gravitatio	nal Ene	ergy	Graviton	10 ⁻³⁹
chool of Dosimetry Incer Therapy & Resea	Irch Center	SCIEN		

(Jonathy	Definition	SI zoli	Old axit	Correnties
Espanue X	$X = \frac{\Delta Q}{\Delta m_{\rm dr}}$	2.58× <mark>104C</mark> ig air	$I R = \frac{I mu}{cm^4 all_{str}}$	1 Fi = 2.58× <mark>10⁻¹0</mark> kg al
Dawn D	$D=\frac{\Delta E_{\rm th}}{\Delta m}$	1 Gy -1 <mark>J</mark> Ig	L rad - 190 erg	i Gy = 100 real
Equivalent dass N	H-Dw _e	1 S v	1 mm	1 Sv = 100 rom
Activity N	$\beta = \lambda N$	1 Bq = 1 a ⁴	1 (1 -3.7 x 10 ¹⁶ a ⁻¹	1 8q = <u>1 Cl</u> 3,7 x10 ^N

1.2 ATOMIC ANI 1.2.4	D NUCLEAR STRUCTURE Multi-electron atom
 Bohr theory works however, it does not a because of the repuls atomic electrons. 	well for one-electron structures, apply directly to multi-electron atoms ive Coulomb interactions among the
 Electrons occupy allow per shell is limited to 2. 	red shells; however, the number of electrons n^2 .
 Energy level diagrams one-electron structure bound with much large 	s of multi-electron atoms resemble those of s, except that inner shell electrons are r energies than $E_{\rm R}$.
School of Dosimetry Cancer Therapy & Research Center	UT HEALTH Science Center Manager

1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.7 Radioactivity
 Radioactivity is a process by which an unstable nucleus (parent nucleus) decays into a new nuclear configura- tion (daughter nucleus) that may be stable or unstable.
 If the daughter is unstable it will decay further through a chain of decays until a stable configuration is attained.
. (ADD MINAP
School of Dosimetry Cancer Therapy & Research Center Science Exercise

	1.4 PHOTON INTERACTIONS 1.4.1 Types of indirectly ionizing photon irradiations
•	 Interactions of photons with nuclei may be: Direct photon-nucleus interactions (photodisintegration) or Interactions between the photon and the electrostatic field of the nucleus (pair production).
•	Photon-orbital electron interactions are characterized as interactions between the photon and either
	 A loosely bound electron (Compton effect, triplet production) or
	A tightly bound electron (photoelectric effect).
Schoo Cancer	of Dosimetry Therapy & Research Center

1.4 PHC 1.4.2	DTON Photon	INTERAC	CTIONS enuation	
	Symbol	Relationship to #	Units	
Linear attenuation coefficient	μ	μ	cm ⁻¹	
Mass attenuation coefficient	µ _m	<u>µ</u> p	om²/g	
Atomic cross section		$\frac{\mu}{n^m}$	cm²/atom	
Electronia cross section	s₽ [₽]	$\frac{\mu}{Z a^{e}}$	om²/electron	
School of Dosimetry Cancer Therapy & Research Center	SCIENC	HEALTH E CENTER		era

1.4 PHOTON INTERACTIONS 1.4.2 Photon beam attenuation

The mass attenuation coefficient of a compound or a mixture is approximated by a summation of a weighted

is the proportion by weight of the i-th constituent

– μ_i / ρ_i is the mass attenuation coefficient of the i-th constituent

UT HEALTH SCIENCE CENTER

A IAEA

 $\frac{\mu}{\rho} = \sum_{i} W_{i} \frac{\mu_{i}}{\rho}$

average of its constituents:

•

- W

School of Dosimetry Cancer Therapy & Research Center

1.4	PHOTON	I INTERA	CTIONS
1.4.3 Typ	pes of photo	on interactio	ns with absorber
Interaction	Symbol for electronic cross section	Symbol for atomic cross section	Symbol for linear attenuation coefficient
Thomson scattering	$_{ m e}\sigma_{ m Th}$	$_{a}\sigma_{\mathrm{Th}}$	$\sigma_{ m Th}$
Rayleigh scattering	-	$_{\rm a}\sigma_{\rm R}$	$\sigma_{ m R}$
Compton scattering	$_{\rm e}\sigma_{\rm c}$	$_{\rm a}\sigma_{\rm c}$	$\sigma_{ m c}$
Photoelectric effect	-	aτ	τ
Pair production	-	${}_{a}\kappa_{pp}$	K _p
Triplet production	е ^К tр	a κ_{tp}	ĸ
Photodisintegration	-	$_{a}\sigma_{\mathrm{pn}}$	$\sigma_{ m pn}$
		T HEALTH	
School of Dosimetry Cancer Therapy & Research C	enter SCIEI	NCE CENTER	

• When the photon energy $h\nu$ exceeds the K-shell binding energy $E_{\rm B}({\rm K})$ of the absorber atom, the photoelectric effect is most likely to occur with a K-shell electron in comparison with higher shell electrons.

School of Dosimetry Cancer Therapy & Research Center	SCIENCE CENTER	

1.4 PHOTON INTERACTIONS 1.4.4 Photoelectric effect

Айн

A IAEA

Schematic diagram of the photoelectric effect

A photon with energy *hv* interacts with a K-shell electron
The orbital electron is emitted from the atom as a photoelectron

.

School of Dosimetry Cancer Therapy & Research Center

UT HEALTH SCIENCE CENTER DAY ANTONIO

1.4 PHOTON INTERACTIONS 1.4.11 Effects following photon interactions Pair production and triplet production are followed by the

annihilation of the positron, which lost almost all its kinetic energy through Coulomb interactions with absorber atoms, with a "free" electron producing two

The two annihilation quanta have most commonly an energy of 0.511 MeV each, and are emitted at approx-imately 180° to each other to satisfy the conservation of momentum and energy.
 Annihilation may also occur of an energetic positron with an electron and this rare event is referred to as annihilation-in-flight.

UT HEALTH SCIENCE CENTER

A IAEA

•

annihilation quanta.

School of Dosimetry Cancer Therapy & Research Center

	Phatosisctoic střect	Rayleigir scattering	Compton effect	Pair production
Piroton Interactive	With whole atom (bound electron)	With bound alactrons	With Inse electrons	With nuclear Coulomb fis &
Node of photon Interaction	Photor diseccese	Photon scattered	Photom scatterect	Photor: diseccents
ದಾರ್ಯ ಕ್ರಾಂಗ್ರಾಮಾರ್	(hy)	$\frac{1}{(\lambda v)^2}$	Decreases with energy	have a set of the set
Threatedd	Shell kinding energy	Na	Sheli binding energy	-2m_c ²
Linear albatuation condition	Ŧ	$\sigma_{_{\!\!R}}$	σ	ĸ
Ascenic coel- ficient depen- derreu au Z	$_{\circ}\tau \simeq Z^{\circ}$	_e σ ₂ ∝ Z ¹	, <i>a</i> , ≈ Z	,x ∝ Z ²
Nees coefficient dependence on	$\frac{r}{r} \sim Z^{*}$	$\frac{\sigma_{\rm H}}{\sim} \approx Z$	Indispandent	<u>×</u> ∝ Z

	Photoelectric effect	Raytolyb acutoring	Compton effect	Pair production		
Particles released in absorber	Photosladinan	Mare	Compton (stocall) electron	Electron- poolition pair		
Annuage energy transferred to cluegestyaat's	$k\sigma = F_k m_k E_0 \beta K$	e	$\stackrel{-r}{L_{ m v}}$ (first, Sika Gaupil).	ht-2m/2		
Faultier of catago At- baselesed	$P=1-\frac{P_{0}g_{0}\overline{\delta \sigma}_{0}}{\delta v}$		$\Gamma=\frac{\overline{E}_{1}^{\prime}}{lw}$	$t^{\mu} \!=\! 1 \!-\! \frac{2 m \mu^{\mu}}{6 \tau}$		
Sulcayout clint	(Dorostiatsia xrey, Anger sitteni	Mone	Chanacharladha 16 Mige Angur vallanti	Restriction resider		
Significant consego region dormator	< 30%ba37	~284a¥	20.1eW-101666	▶ 偏朝親		

