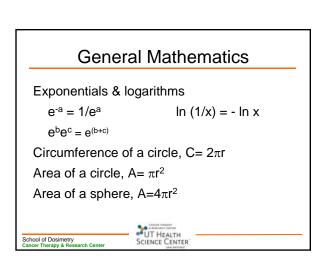
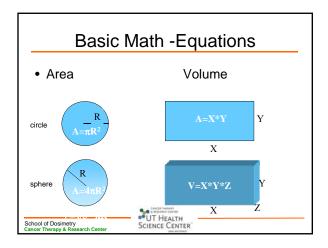

Calculator Use2 * 3 + 4 = ??2 * (3+4) = 14A scientific calculator that correctly
evaluates mathematical expressions
will give an answer of 10.School of Dosimetry
Cancer Therapy & Research Center

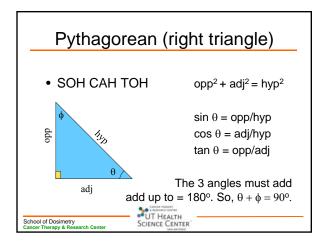
Calculator Use


Find the 5th root of 243. Press: 243 2ndF y^x 5 = (or 5 2ndF ^ 243)= (any other alternatives?) Result: 3 Calculate logarithm of 31.62 Press: 31.62 log = (or log 31.62)= Result: 1.499961866 School of Dosimetry School of Dosimetry

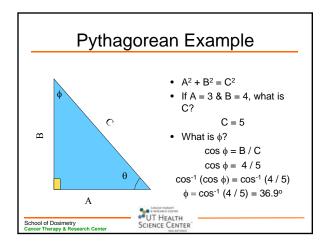
Calculator Use
Calculate e ^{3.42}
Press: 3.42 2 nd F In = (2 nd In 3.42) =
Result: 30.56941502
Calculate e ^{-3.42}
Press: -3.42 2 nd F In = (2 nd F In 3.42)=
Result: 0.032712434
School of Dosimetry Cancer Therapy & Research Center SciEnce Center

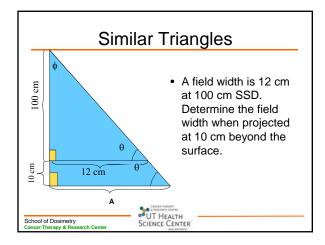

Calculator Use

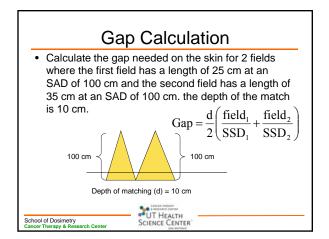
Calculate t	he recipro	cal of 974.87
Press:	•	$2^{nd}F x^2 = (or 974.87 x^{-1}) =$
Result:	0.00102	, ,
Increase 38	3 by 15%.	
Press:	$38 + (0.15 \times 38) = (\text{ or } 38 \times 1.15) =$	
Result:	43.7	
Calculate 4	7% of 219	9.
Press:	219 X 0.47 =	
Result:	102.93	
School of Dosimetry Cancer Therapy & Resear	ch Center	Science Conter

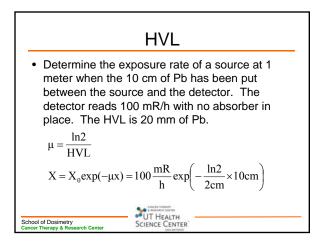


	Percentages
'	What is 30% of 432? 129.6
	Prescription written for 4500 cGy. You decide to treat to the 98% line. What is the dose at the 100% line? 4592 cGy
	Your hot spot was at 102%. When you treat to the 98% line, what is the dose at the hot spot?
_	4683 cGy
	ool of Dosimetry SCIENCE CENTER er Therapy & Research Center SCIENCE



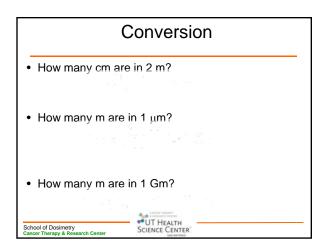






SI	Base Units
units. Everythi	there are seven nits and two supplemental ng thing in the physical lescribed by these units.
science is spe	equations or objective lled with only nine letters nits and two supplemental
School of Dosimetry Cancer Therapy & Research Center	UT HEALTH SCIENCE CENTER UN STANDARD

Seven Fu	undamen	tal Units
<u>Quantity</u>	<u>Unit name</u>	Abbreviation
Length	meter	m
Mass	kilogram	kg
Time	second	S
Light intensity	candela	cd
Current	ampere	А
Temperature	Kelvin	К
Quantity of mass	mole	Mol
School of Dosimetry Cancer Therapy & Research Center	CANCER THEARTY A REMARKY CENTRE UT HEALTH SCIENCE CENTER MAN ANTONIO	



Su	pplementa	I Units
<u>Quantity</u> plane angle solid angle	<u>Unit name</u> radian steradian	<u>Abbreviation</u> rad sr
School of Dosimetry Cancer Therapy & Rosearch Center	UT HEALTH SCIENCE CENTER	

	Prefixes	S	
Prefix	Symbol	Factor	
peta	Р	10 ¹⁵	
tera	Т	10 ¹²	
giga	G	10 ⁹	
mega	М	10 ⁶	
kilo	k	10 ³	
hecto	h	10 ²	
deka	da	10 ¹	
deci	d	10 ⁻¹	
centi	С	10 ⁻²	
milli	m	10 ⁻³	
micro	μ	10 ⁻⁶	
nano	n	10 ⁻⁹	
pico	р	10 ⁻¹²	
femto	f	10 ⁻¹⁵	

Conversions
1 tesla (T) = 10 ⁴ gauss
1 joule (J) = 10^7 erg
1 angstrom (Å) = 10^{-10} meter
1 mile (mi) = 1609 meter
1 curie (Ci) = 3.7×10^{10} becquerel
1 electron volt (eV) = 1.6 x 10 ⁻¹⁹ J
1 roentgen (R) = 2.58 x 10 ⁻⁴ C/kg
1 rad = 10 ⁻² gray = 1 cGy
$1 \text{ rem} = 10^{-2} \text{ sievert} = 1 \text{ cSv}$
1 calorie = 4.19 joule
School of Dosimetry Cancer Therapy & Research Center

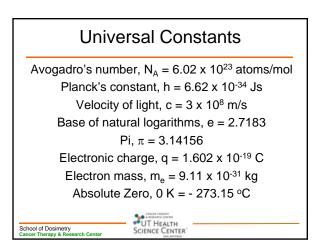
Unit Conversions

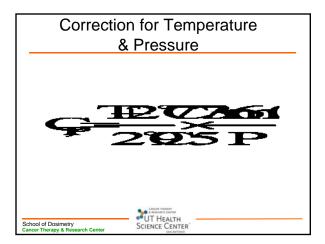
Length: 1 meter = 3.3 feet

 2.54 cm = 1 inch

 Mass: 1 kg = 2.2 lb

 1 lb = 0.453592 kg (just reverse above)


 Time: 1 sec = 1/60 min = 1/3600 hr
 Temperature: °F = (1.8 * °C) +32


 Kelvin = °C + 273.15

 School of Dosimetry

 School of Dosimetry
 Camere Therapy & Research Center

C_{T,P} Example

• The temperature is 20°C and the pressure is 733 mmHg. What correction factor do we need to use?

> UT HEALTH SCIENCE CENTER

School of Dosimetry Cancer Therapy & Research Center

Conventional Units Curie: rate of radioactive decay Quantity of any radioactive nuclide which undergoes 3.7x10¹⁰ disintegrations per second. 1Ci=3.7x10¹⁰ Bq or 37 MBq = 1 mCi Roentgen: That quantity of x-rays or gamma radiation such that it produces in air charged particles of either sign equal to 2.58x10⁻⁴ C/kg.

Conventional Units

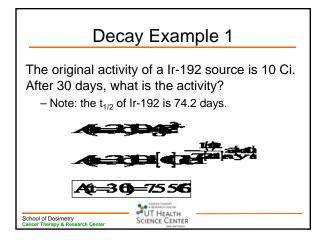
Rad: an ionizing radiation unit corresponding to an absorption of energy in any medium of 100ergs/g.

1 rad = 0.01 gray = 1 cGy.

Gray: SI derived unit of absorbed dose of ionizing radiation

Conventional Units

Rem:

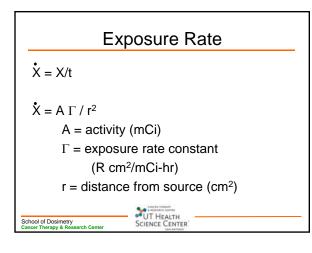

Abbreviation for roentgen-equivalent man 1 rem=100 ergs/g absorbed energy=0.01 Sv

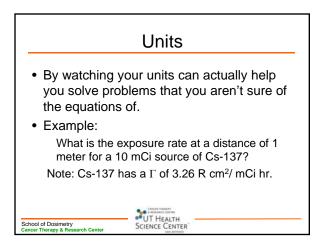
Used only for radiation protection purposes Sievert:

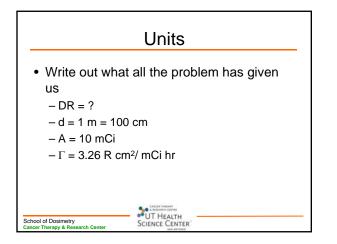
SI unit or radiation dose equivalent One Sievert is the dose equivalent when the absorbed dose of ionizing radiation multiplied by the stipulated dimensionless factor is 1J/kg. 1 rem=0.01 Sv

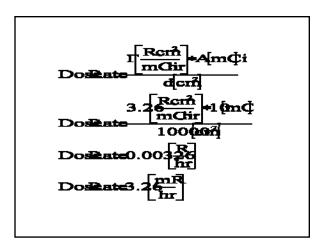
UT HEALTH Science Center

School of Dosimetry Cancer Therapy & Research Center

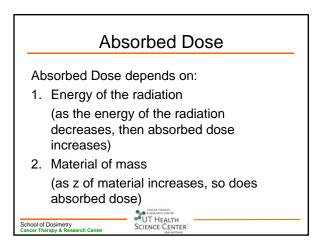

Want to know how much radiation is there Deletes to indirectly inspiring radiation

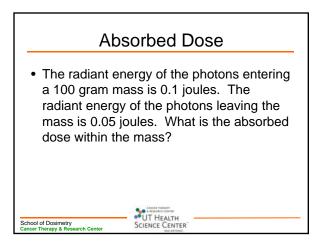

- Relates to indirectly ionizing radiation
- Measure of ionization produced in air by photons
- X = dQ/dm
- dQ is the absolute value of the total charge of ions of one sign (+ or -) produced in air when all the electrons (negatrons and positrons) liberated by photons in air of mass dm are completely stopped.
- Measured in Roentgens (or SI: C/kg)

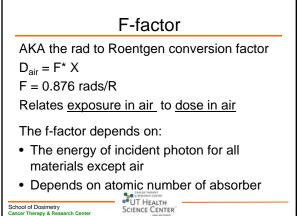

Exposure

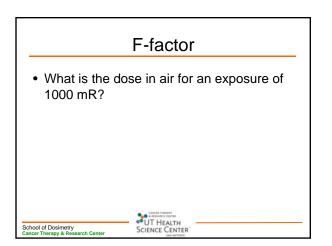

A small air filled cavity ion chamber collects a charge of 8 nC. The cavity volume is 0.200 cm^3 and the density of air is 0.0013g/cm³. What is the measured exposure? (hint: m= ρ V)

School of Dosimetry Cancer Therapy & Research Center SCIENCE CENTER




Radiation Exposure


- Charge produced by ionizing electromagnetic (EM) radiation per unit mass of <u>air</u>.
 - C/kg in SI units (International System of Units).
- 1 Roentgen (R) = 2.58 x 10⁻⁴ C/kg of air.
- Valid for photon energies up to 3 MeV.
- Fluence = number of photons passing through a unit cross-sectional area.
- Fluence rate (flux) = number of photons passing through a unit cross-sectional area per unit time.


Absorbed Dose

Amount of radiation that is absorbed Energy imparted to matter (by electromagnetic radiation or particulate radiation) per unit mass D=dE/dmUnits: rad, cGy; 1 Gy = 1 J/kg 100 rads = 1 Gy 1 cGy = 1 rad

