Radiation Oncology Residency Lectures in Physics

HDR Brachytherapy David Findley, Ph.D. Radiation Therapy: Brachytherapy vs. Teletherapy Teletherapy describes "at a distance" (tele-) treatment **Teletherapy radiation machines** locate an external radiation source at a large distance, 50 cm to 100 cm or more, from the tissue to be treated.

Brachytherapy

denotes "short" distance
(brachy-) treatment

Brachytherapy source or sources are placed in or immediately adjacent to the tissue to be treated

Types of Brachytherapy

- 1. Interstitial
- 2. Intracavitary
- 3. Intraluminal
- 4. Surface molds (plaques)

How are brachy sources introduced?

1. Manual Loading

2. Afterloading

3. Remote Afterloading

LDR (low dose rate): 0.4 to 1 Gy/hr

MDR (medium dose rate): 1 to 60 Gy/hr

HDR (high dose rate): >60 Gy/hr

LDR **Advantages** •100 years of experience doses/effects well established therapeutic ratio * possibly superior to HDR

Disadvantages of LDR

inpatient hospital stay

radiation exposure to staff and visitors

Morbidity due to extended bedrest

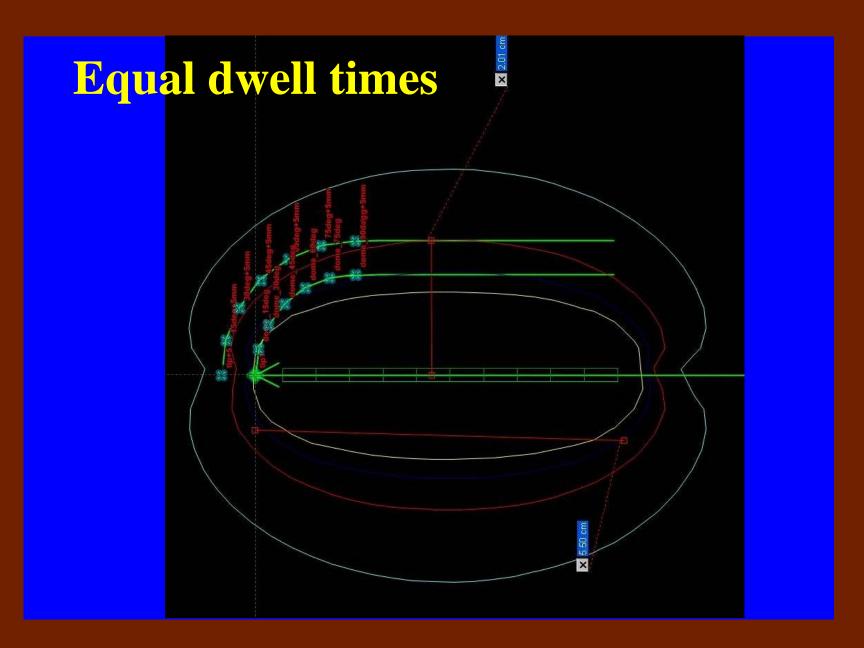
large number of sources in inventory

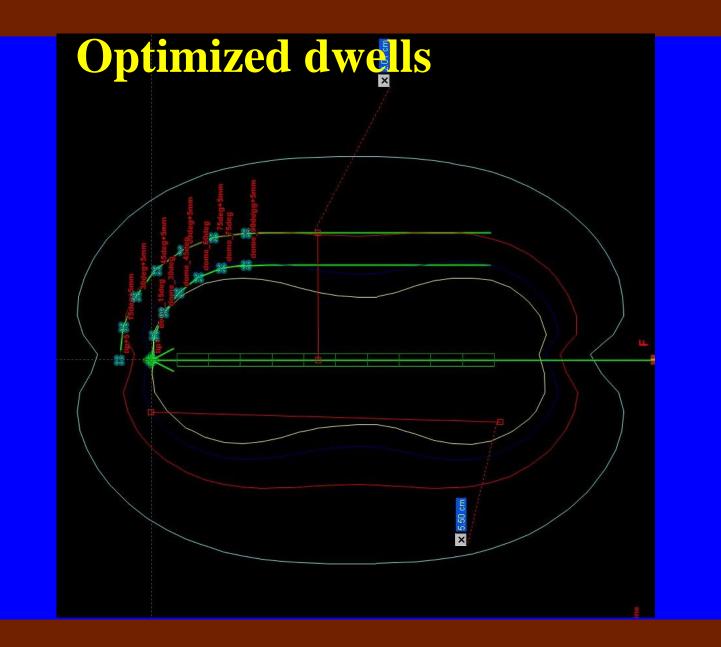
HDR

Advantages

Optimization of dose distribution

•Reduced risk of morbidity due to immobilization


•No radiation dose to family/caregivers


Only one source in inventory

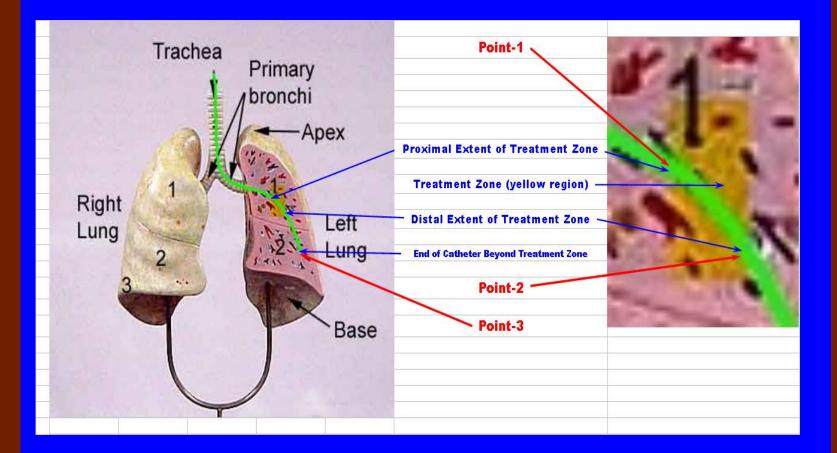
Disadvantages of HDR

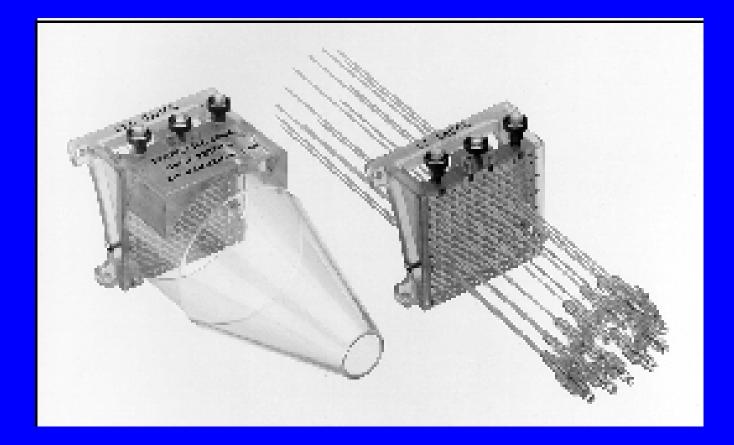
Fractionated treatments (typically 3-10)
Doses not as well established as LDR
(?) Increased late effects compared to LDR(?)

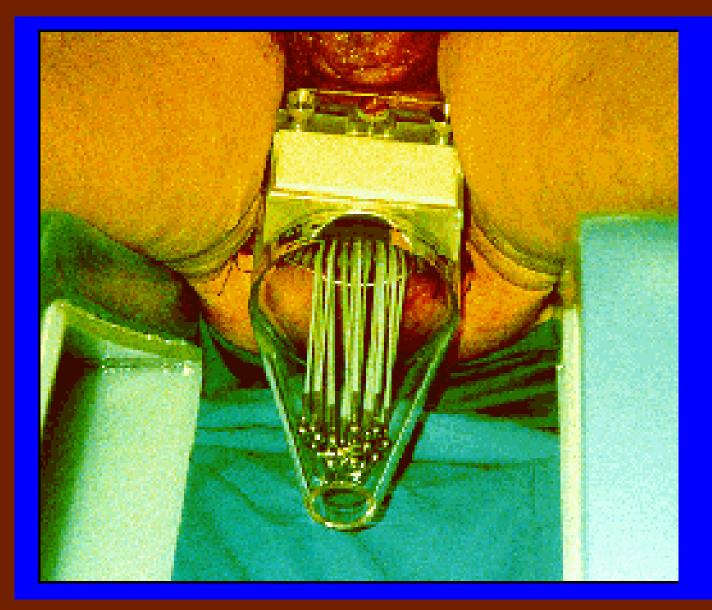
The primary advantage of HDR is the possibility of dose optimization using a steppingsource technology as opposed to the static sources of LDR.

Optimized dwell times

well Control										
- tandem	(channel 1]								
Pos [cm]	Time (s)	20	40	60	sò	100	120	140	160	180
119.7	7.9									
119.2	116.4	8								
118.7	56.4									
118.2	3.6									
117.7	17.5									
117.2	28.7									
116.7	0.2									
116.2	21.1									
115.7	8.4									
115.2	165.9	20								


Varisource VS200


Popular HDR Procedures


- **1. Endobronchial**
- 2. Prostate
- 3. Gyn; SF and vaginal cylinder, template
- 4. Breast template
- 5. MammoSite

Endobronchial HDR

Mick HDR template

beyond a peripheral flexiguide. This approach had the effect of creating a treatment volume that was based upon: (1) the TRUS prostate and seminal vesicle anatomy; (2) the clinical and radiological determination of the extent of disease; (3)

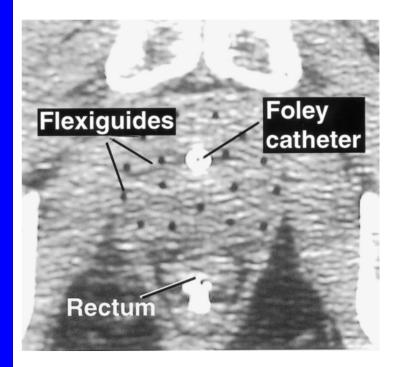
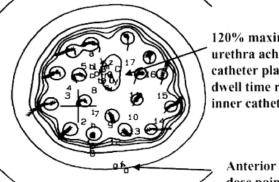
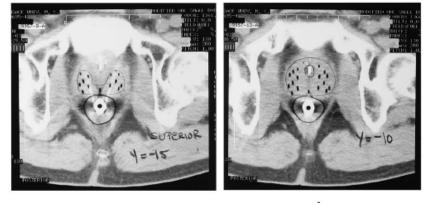



Fig. 8. CT showing 17 flexiguides, urethra and rectal contrast. Note the position of catheter #15 is displaced posterior from central row to form the 'central' flexiguide in the posterior plane of the implant.

disease (Fig. 9). This has been verified by duplicating the dosimetry using Nucletron's 3D PLATO software and evaluating the 100% isodose 'cloud' for complete coverage of the target volume.

After the dose was calculated, further refinement in the dosimetry was achieved by manual dwell time adjustment We observed the uniformity of doses to the prostate and the maximum doses delivered to various patient (normal tissue) points. When prostate doses required refinement or patients points exceeded the allowable levels, the dosimetrist used the 'dose verification to a point' option to evaluate which


Transverse Isodose Distribution

120% maximum dose to urethra achieved by catheter placement and dwell time reductions in inner catheters.

Anterior rectal wall dose points

Fig. 9. Transverse representation of isodosimetry of the mid implant.

Template-catheter movement in prostate HDR • E. MULLOKANDOV *et al.*

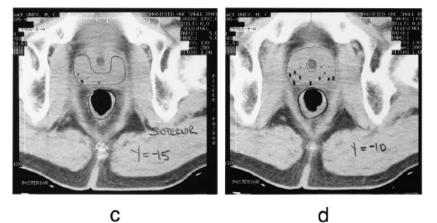
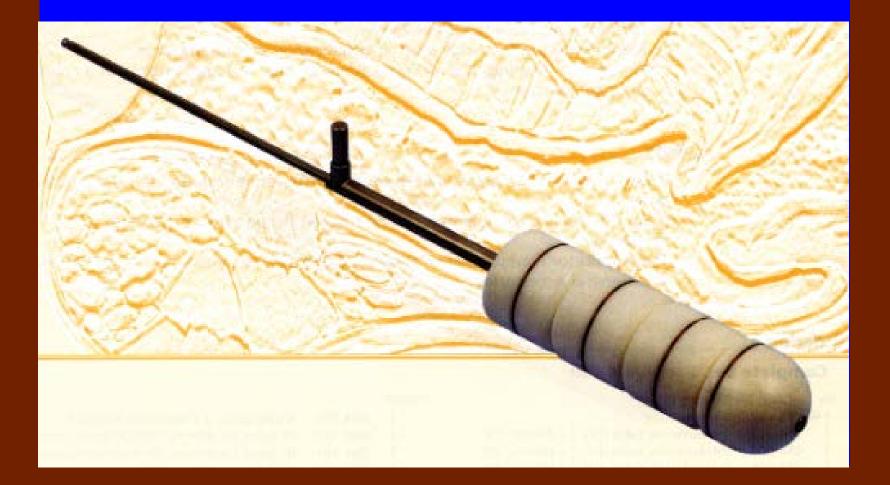
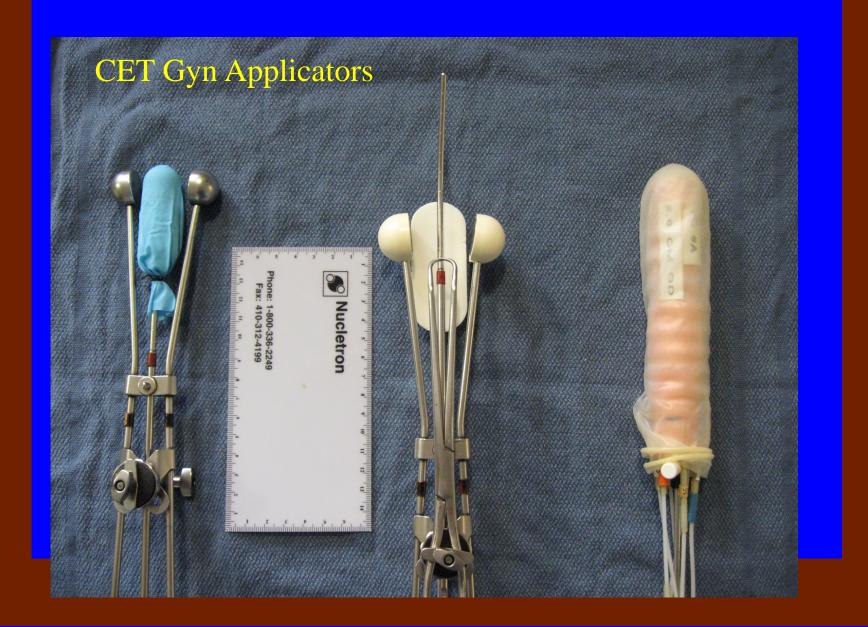
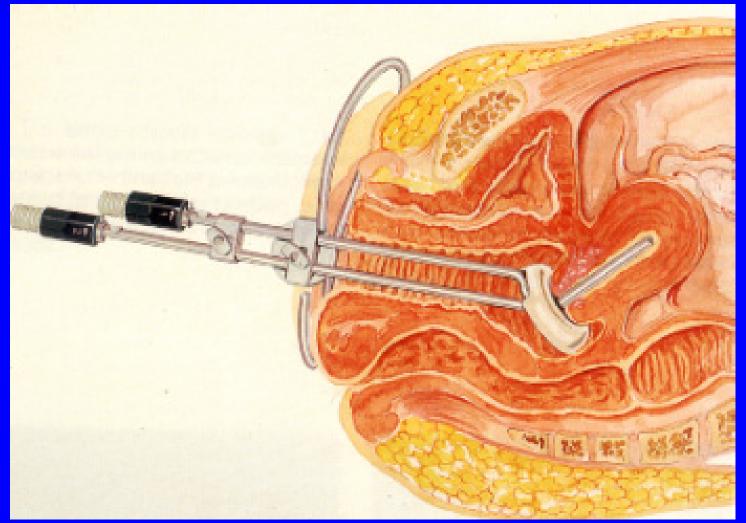



Fig. 3. Serial CT cuts of prostate base demonstrating caudal displacement of catheters. (a,b) Initial CT scans. (c,d) Second CT scans.

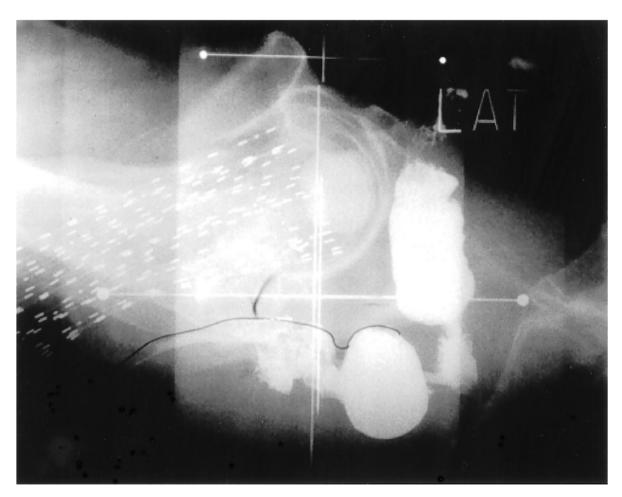
Vaginal cylinder for HDR



Demanes-Rodrigues Applicator for HDR



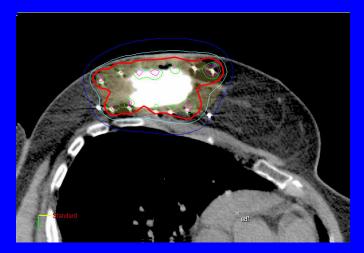
CT/MRI compatible FSD applicator for HDR



Ring applicator

Smit sleeve for fractionated HDR treatments

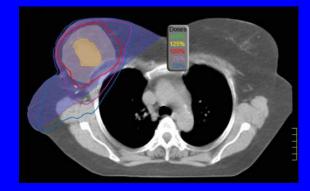
D.J. Demanes et al. / Radiotherapy and Oncology 57 (2000) 289-296


Fig. 7. Lateral simulation radiograph, showing tungsten 'dummy' ribbons, Foley catheter and rectal barium.

Breast Irradiation Technique

Interstitial Multi-Catheter

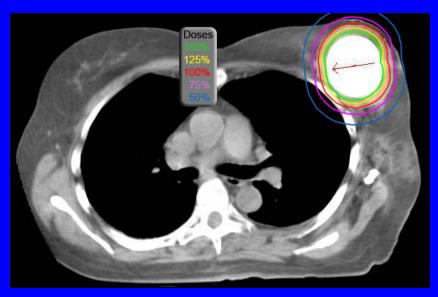
- Treats lumpectomy margin
- Effective in properly selected patients
- Can be challenging technically¹
- Optimal results require extensive operator and institutional experience¹


¹Shah N, Tenenholz T, Arthur D, DiPetrillo T, et al. MammoSite and Interstitial Brachytherapy for Accelerated Partial Breast Irradiation. *Cancer.* 101: 727-734; 2004.

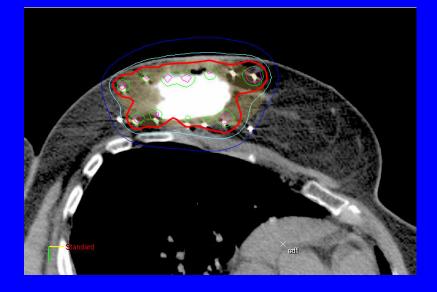
Investigational PBI Technique

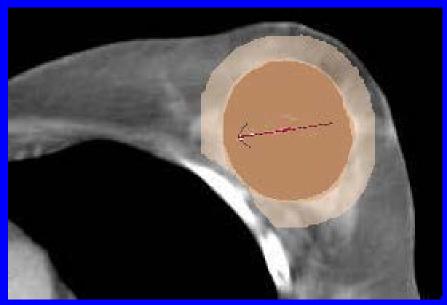
3D CRT

- 3 5 non-coplanar beams
- No IMRT or bolus allowed
- No beams direct towards critical structures
- PTV = 2.5cm margin + 0.5cm margin for penumbra
- 3.85 Gy/fx, 10 fx, BID (38.5 Gy total dose)

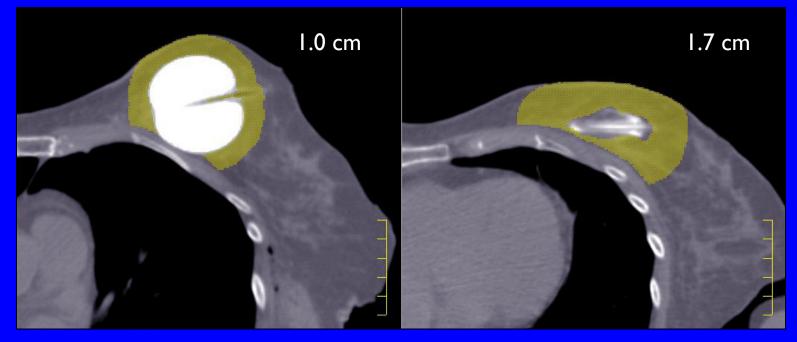


Breast Irradiation Technique


MammoSite


- Distends cavity
- Very conformal
- Prescription limited by doses to skin and balloon surface

Treatment Volumes: Multiple Catheter / MammoSite® RTS



Treatment Volume of mulitcatheter implant: a 2 cm margin around the lumpectomy cavity, excluding the chestwall and 0.5 cm of tissue below the skin. Treatment Volume of MammoSite: a I cm margin around the balloon surface, excluding the chestwall and balloon volume.

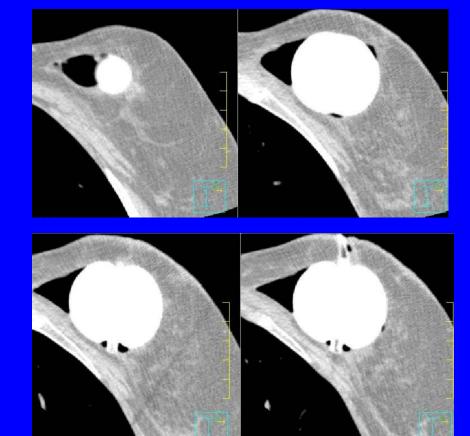
Effective Depth of Treatment^{1,2}

- Before, after deflation
- Shaded volumes are equal

¹Edmundson GK, Vicini FA, Chen PY, Mitchell C, Martinez AA. Dosimetric Characteristics of the MammoSite RTS, A New Breast Brachytherapy Applicator. *Int. J. Radiation Oncology Biol. Phys.* 52: 1132-1139; 2002 ²Dickler A, Kirk M, Choo M, et al: Treatment Volume and Dose Optimization of MammoSite Breast Brachytherapy Applicator. *Int J Radiat Oncol Biol Phys* 59: 469-474, 2004.

Not Appropriate for Treatment

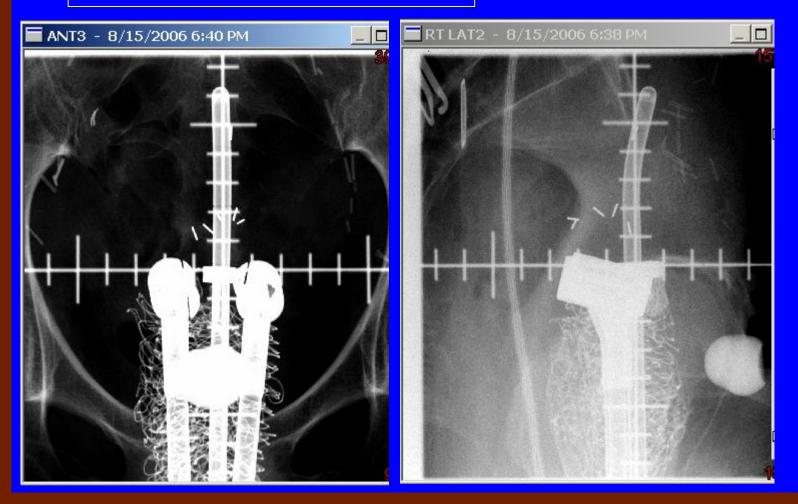
 Significant balloon distortion due to inappropriate cavity selection


Appropriateness for Treatment: Balloon to Skin Spacing

Skin reaction due to minimal skin spacing

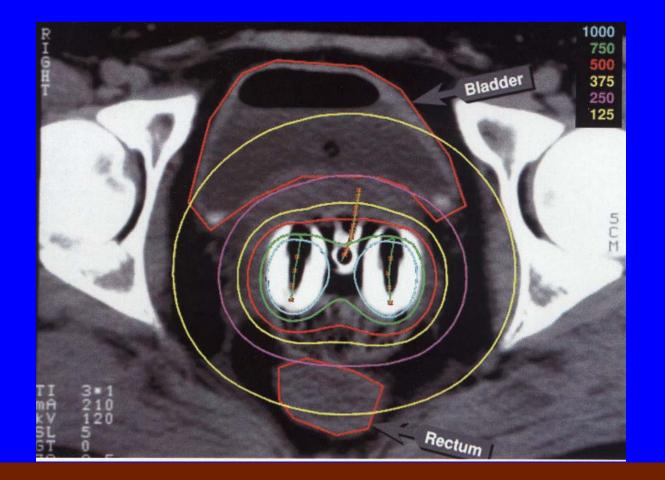
Appropriateness for Treatment: Tissue/Balloon Conformance

Poor conformance – Unrecoverable air gap


Source Localization Methods

Orthogonal "films"
 Stereo shift "films"
 Isocentric variable angle "films"
 Localization jig (frame)
 CT localization

Orthogonal films


Orthogonal films

• available in a choice of two widths (50 and 65 cm), depending on the aperture of the C-arm being used

Tranverse CT through colpostats

Specific Activity

of a radioactive material is defined as the activity per gram of the material. The maximum specific activity is straightforward to calculate:

Avagadro's Number N_A is the number of atoms in a gram-atomicweight, i.e. the number of atoms in 226 grams of Ra-226. It is numerically equal to 6.022 x 10^{23} . A is the decay constant in sec⁻¹ and A is the atomic weight in grams. The specific activity then equals:

Specific Activity of Radium

0.975 Ci/g

Units of Activity

Becquerel, Bq 1 sec⁻¹

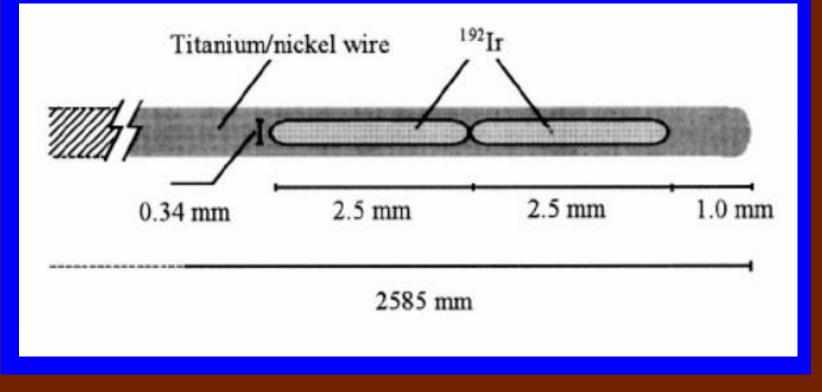
Curie, Ci 3.7 x 10¹⁰ sec⁻¹

Properties of Brachytherapy Isotopes

Radionuclide	Half-life	Photon energy	Exposure Rate Constant	Specific Activity
		MeV	Rcm2/Mci-hr	Ci/g
Ra-226	1600 yr	0.047-2.45	8.25	0.989
		(0.83 avg)		
Co-60	5.27 yr	1.17,1.33	13.07	1135.069
Cs-137	30 yr	0.662	3.26	86.994
lr-192	74 days	0.136-1.06	4.6	9191.574
		(0.38 avg)		
Yb-169	32 days	0.093 avg		24170.939

Using the exposure rate constant to calculate environmental exposure from sealed brachytherapy sources: example Ir-192

$4.6 \text{ R-cm}^2\text{-mCi}^1\text{-hr}^1$


Consider a 10 Ci source at a distance of 20 cm.

Consider a 10 Ci source at a distance of 20 cm.

 $\left(\frac{4.6Rcm^{2}*10^{4}mCi}{mCihr^{\frac{4.6Rcm^{2}*10^{4}mCi}{*20^{2}cm^{2}}=115Rhr^{-1}}}\right) = 115Rhr^{-1}$

Remember TDS: *time*, *distance*, *shielding*

Varian HDR Source

microSel	ectron HDR V	2 + V3					
Part number	Source material	Source strength	Source capsule diameter	Source capsule length	Cable Length	Tail color	Serial Number
105.002	Solid Ir-192	10.0 Ci / 370.0 GBq	Ø 0.9 mm	4.5 mm	2022 mm	Orange	D36XNNNN

Part number: 105.002 - 106.002 - 106.003 - 106.004 microSelectron PDR HDR V2 + V3 Source capsule diameter: Ø 0.9 mm

Figure 2: Source cable: microSelectron HDR V2 + V3

¹⁶⁹Ytterbium Low Energy Gamma Source for High Dose Rate Brachytherapy

Physical Characteristics

¹⁶⁹Ytterbium Physical Properties

Half Life: E_{\gamma-avg}:

30.2 days 93 keV Decay Mode: Electron Capture (100%) Production Mode: Thermal neutron activation Fast neutron activation

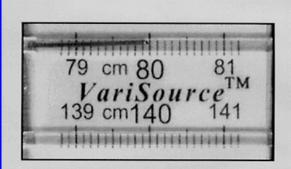
TABLE I. Structural details and geometries of the investigated ¹⁹²Ir HDR sources. All dimensions are in cm.

	Active core			Encap	Outer	
Source type	Material	Length	Diameter	Material	Thickness	
microSelectron (old design)	Ir	0.35	0.0600	Stainless steel	0.0250	0.110
microSelectron (new design)	Ir	0.36	0.0650	Stainless steel	0.0125	0.090
VariSource (old design)	Ir	1.00	0.0340	Ti/Ni	0.0125	0.059
VariSource (new design)	Ir	0.50	0.0340	Ti/Ni	0.0125	0.059
Buchler	Ir	0.13	0.1000	Stainless steel	0.0200	0.160 ^a
Seed (Best Medical)	Pt/Ir	0.3	0.0100	Stainless steel	0.0200	0.050
AngioRad™	Ir	3	0.0127	Ti/Ni	0.0070	0.035 ^b

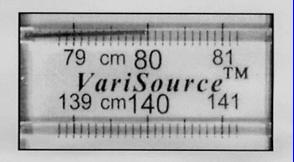
^aAn air gap of 0.01 cm exists between the active core and encapsulation. ^bAn air gap of 0.004 15 cm exists between the active core and encapsulation.

HDR Program

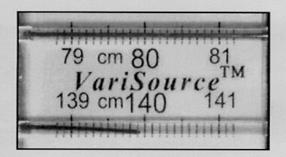
Licensing: Site selection, Shielding, Writing Procedures, Commissioning, Training and Re-Training


Periodic QA: Monthly and Daily Pre- and PostTreatment QA

Periodic QA (may be at source change, monthly or daily)


- 1. Positional Accuracy within 1 mm
- 2. Emergency preparedness (includes posted procedures, equipment and survey meters
- **3.** Interlock tests (interrupts, door, etc.)
- 4. Condition of apparatus (missing lights, etc.?)
- 5. Source activity (monthly calibration check; daily: indicated vs. decay chart)

-			-			293
						994
						995
						992
ą	20	Ø 13	Ø. 17	21	25	4/29/01
	٩	0		(ja	~ /	IITAIAA
	DATE : 20 HALFLIFE: CURRENT SI	01/04/29 1 73.83, k- DURCE STRE	TIME: 14:0 FACTOR: 0 NGTH: 8.4	4658		
	PATIENT NU STEPS CH 1 NM 995	IZE :	3 4		6	


Varian Position Test – 1 mm accuracy required

TARGET: 80.0 ACTUAL: 79.98

ACTIVE WIRE TARGET: 80.0 ACTUAL: 80.00

TARGET: 140.0 ACTUAL: 139.92

dimber density of 79 cm 80 81 *VariSource*TM 139 cm140 141 alimitary intrinsion

ACTIVE WIRE TARGET: 140.0 ACTUAL: 140.02

Calibration of HDR Source Using a Well Ionization Chamber

Treatment QA

<u>Pre treatment</u>: Patient Identity; Independent check of treatment plan; signed written directive; verification of treatment parameters (catheter length; channel-catheter correspondence; and treatment dwell times) ; verify presence of emergency equipment and pre-treatment radiation survey of patient

<u>Post treatment</u>: verify execution of written directive or document deviations; document post-treatment radiation survey of the patient

DEPARTMENT OF RADIATION ONCOLOGY
HDR R _x SHEET
Patient's Name
MR# Date 5-17.05
Diagnosis Sz. I SCL y Ungr
Prescription 500 cg at 0,5 a y 2
$\frac{\text{Treatment }\#}{1 \ 2 \ (3) \ 4 \ 5}$
Vaginal Cylinder
Cylinder diameter 25 mm
Tx length <u>90° mm</u>
Tx depthŚmm
of active dwell positions 32 33 Activ Treatment time 465.2 sec
Source Activity 6.78 Ci
Dan Fiely Physicist
TSh.
Radiation Oncologist

Written Directive

Emergency Procedures When the active source does not retract into the safe

- 1. Attempt to activate back-up motor
- 2. Identify the active catheter if possible
- **3. Remove either the active catheter or the entire Applicator and place it into the emergency container**
- 4. Maintain a closed system (take care on disconnecting!)
- 5. Remove the patient from the treatment room and survey

Indiana, PA, iridium-192 incident

An 82-year-old woman was diagnosed with anal cancer and treated with high dose rate brachytherapy at Indiana Regional Cancer Center, Indiana, Pennsylvania, on 16 November 1992. High-intensity 192Ir brachytherapy was begun, but the source was not retracted afterwards and remained in place for 4 days until it dislodged. Hospital staff ignored warning signals, believing that safety equipment was giving a false alarm, and the source was not discovered until it was transferred to a medical incinerator. The patient died 5 days after the exposure [1, 5, 6].