

NO ONCOS

Common dosimeters

- Clinical dosimeters:
- Ionization chamber
- Semiconductor Diode
- Metal-oxide-silicon-semiconductor field effect transistor (MOSFET)
- Thermoluminescent Dosimeters (TLD)
- · Film (radiographic and radiochromic)

Other dosimeters:

- Gel Dosimeter
- Calorimetry:
- Alanine
- Plastic scintillate systemDiamond dosimeter

Ionization chamber

- · Basic instrument for radiation therapy physicist
- Gas-filled radiation detector
- · High precision with small uncertainties
- · Require calibration

Major types of clinical ionization chambers

Cylindrical

NONCO

- Parallel plate
- Extrapolation chambers

NONCO

Electrometers

- A device for measuring charges
- · Rate (current) or integrated mode (charge)
- Input current is very low; special sensitive devices are necessary to measure it
- $\,$ Example: Current from 0.6 cc Farmer chamber in 100 R/min field at 760 mm Hg and 22 $^{\circ}{\rm C}$ is:

 $\begin{array}{l} 100 \ R/min \times 1/60 \ s/min \times 2.58 \times 10^4 \ C/kg \cdot R \times 0.6cc \times 10^6 m^3/cc \times \\ 1.29 \ kg/m^3 = 3.33 \ \times 10^{-10} A = 0.333 \ nA \\ \\ \mbox{where } 1.29 \ kg/m^3 \ \mbox{is the density of air at 760 mm Hg and 0 $^{\circ}C$. } \end{array}$

Considerations in Ionization Chamber Measurement

Ion collection:

Stem effect

NONCO

- Leakage
- Collection efficiencyPolarity effect
- Calibration and Energy response
- Environmental conditions
- Temperature
- Pressure

NO ONCO

TON ONCO

	Ion Chamber
Dose rate dependency	Pion, usually very small <1%
Dose dependency	No
Background correction	Leakage <10 fA
Temperature, pressure	Need correction
Polarity	Small
Linearity	Linear
Directional dependence	Small
Spatial resolution/size effects	Wide range (0.015 cc to 0.6 cc)
Readout convenience	Instantaneous
Energy dependence	Relatively small for therapeutic beams

Diode

NONCOL

- Silicon p–n junction diodes are often used for relative dosimetry
- Intrinsic semiconductor (Si) is material with a narrow energy band width (1.1 eV).
- Temperature gives enough energy to produce a small amount of electron and hole (pair); both are conductive
- Doping "donor" impurity (e.g. phosphorous or arsenic) produces additional electrons (n-type)
- Doping "acce<u>p</u>tor" impurity (e.g. boron or aluminum) produces additional holes (p-type)

1000

n-type and p-type Diodes

- A diode is a p-n junction made by doping the semiconductor with donors and acceptors at adjacent junctions.
- n-type diodes have the high doping level of n-type semiconductors and the low doping level of p-type semiconductors. The reverse is true for p-type diodes

MONCOU

Characteristics c	of Diode
	Diode
Dose rate dependency	Strong dose rate (dose per pulse) depend
Dose dependency	Yes
Background correction	Leakage primarily contributed by electrometer
Temperature, pressure	0.3%/ °C
Polarity	NA
Linearity	Linear
Directional dependence	Large, depends on construction
Spatial resolution/size effects	High spatial resolution
Readout convenience	Instantaneous
Energy dependence	Large

00

TLD basis

- When irradiated, electrons in the valence band (ground state) receive sufficient energy to be raised to the conduction band.
- The vacancy thus created in the valence band is called a positive hole.
- The electron and the hole move independently through their respective bands until they recombine (electron returning to the ground state) or until they fall into a trap (metastable state).
- Electrons can be released by heat and recombine with holes.
- Recombination produces light with a wavelength characteristic of center

Annealing

- Low temperature traps fade away with time at room temperature
- Pre-heat period without light integration: rapidly get through the unstable-trap region
- Annealing at 400C for 1 hour resets the trap structure and eliminates any electrons in residual traps

TLD readout can be affected by

NONCO

NO ONCO

- TLD handling vacuum tweezers
- Stable high voltage on reader
- Dark current of PMT
- Infrared from heating pan
- Hot gas used to eliminate pan
- Nitrogen flow for reduction of surface effects
- The wavelength sensitivity of the photomultiplier tube

Table 8.10 Characteristics of Various Phosphors						
Characteristic	LIF	Li2B407:Mn	CaF ₂ :Mn	CaF ₂ mat	CaSo ₄ :Mn	
Density (g/cc)	2.64	2.3	3.18	3.18	2.01	
Effective atomic no.	8.2	7.4	16.3	16.3	15.3	
TL emission spectra (A)						
Range	3,500-6,000	5,300-6,300	4,400-6,000	3,500-5,000	4,500-6,000	
Maximum	4,000	6,050	5,000	3,800	5,000	
Temperature of main TL glow peak	195°C	200°C	260°C	260°C	110°C	
Efficiency at cobalt-60 (relative to LIF)	1.0	0.3	3	23	70	
Energy response without added filter (30 keV/cobalt-	1.25	0.9	13	13	10	
90)						
Useful range	Small, <5%/12 wk	mR-10 ⁶ R	mR-3 × 10 ⁵ R	mR-10 ⁴ R	R-10 ⁴ R	
Fading	mR-10 ⁵ R	10% in first mo	10% in first mo	No detectable fading	50%-60% in the first 2 hr	
Light sensitivity	Essentially none	Essentially none	Essentially none	Yes	Yes	
Physical form	Powder, extruded,	Powder, Tellon	Powder, Teflon	Special dosimeters	Powder, Tetton	
	Telion embedded,	embedded	embedded,		embedded	
	silicon embedded,		hotpressed chips,			
	glass capitaries		glass capitaries			

Characteristics of Ion chamber

	TLD
Dose rate dependency	No
Dose dependency	No
Background correction	Primarily from reader
Temperature, pressure	Readout temperature
Polarity	No
Linearity	Linear up to 5~10Gy
Directional dependence	Small
Spatial resolution/size effects	Small size
Readout convenience	Passive
Energy dependence	Relatively small for therapeutic beams

ABLE I. Physical properties of Kodak I	<i>2</i> 1.	
	ilms.	
Description	XV2	EDR2
Grain crystal	AgBr and AgI	AgBr
Total silver density (g/cm ²) (both sides of the film)	4.2	2.3
Effective thickness (µm)	0.4	0.2
Grain size distribution	Variation in size and shape	Monodisperse
Base thickness (µm)	180	180
Gelatin coating thickness (g/cm ²) (per side)	3	5
Double sided	Yes	Yes
Dynamic range	0.05-0.80 Gy	0.1-5.0 Gy
Dynamic OD range	0-4	0-4
Approximate Dose (Gy) for OD 1	0.4	2.0
Maximum recommended dose (Gy)	0.8	5.0

ilm
′es
10
og
rocessor developer
A
imited range
arge
ligh spatial resolution
assive
arge
1 1 1 1 1 1 1 1

NO ONCOS

Radiochromic film

NO ONCOS

- Radiochromic film consists of a single or double layer of radiation-sensitive organic microcrystal monomers, on a thin polyester base with a transparent coating
- Color of the radiochromic films turns to a shade of blue upon irradiation
- Darkness of the film increases with increasing absorbed dose
- · No processing is required to develop or fix the image.

Energy dependence

- Effective Z: 6.0 6.5
- Sensor material has similar electron stopping power as water & muscle
- Sensor material has similar mass-energy absorption coefficients as water and muscle for energy > 100 keV
- For secondary electron 0.1 to 1.0 MeV and photon energy 0.1 to 1.33 MeV : ~2% of water and muscle

NO ONCO

1000

Ferrous Sulfate (Fricke) Dosimeter

- The energy absorbed from ionizing radiation may produce a chemical change
- When irradiated, the ferrous ions, Fe²⁺, are oxidized by radiation to ferric ions, Fe³⁺.
- ferric ions, Fe³⁺. • G-value = number of molecules per 100 eV absorbed

$$D = \frac{\Delta m}{\rho G} \cdot 9.64 \times 10^6 (Gy)$$

• G-value = 15.7±0.6 / 100eV for electrons 1-30 MeV, photon values similar

Nearly tissue equivalent

Other dosimeters

- · Alanine (Chemical based)
- Plastic scintillate system (Radiation induce light in scintillator)
- Diamond dosimeter (solid sate dosimeter)
- Metal-oxide-silicon-semiconductor field effect transistor (MOSFET)

ABIATION

Summary

- Absolute dosimetry means that the dose is determined from the first principles—without reference to another dosimeter.
- The <u>free-air ionization chamber</u>, specially designed <u>spherical</u> <u>chambers of known volume (e.g. at NIST)</u>, the <u>calorimeter</u>, and <u>the</u> <u>ferrous sulfate (Fricke) dosimeter</u> are examples of absolute dosimeters. They are also called primary standards
- Secondary dosimeters require calibration against a primary standard.
- Ion chambers.
- TLD, diodes, and film are also secondary dosimeters but are used primarily for relative dosimetry. They require calibration against a calibrated ion chamber as well as appropriate corrections for energy dependence (e.g., with depth) and other conditions that may affect their dose response characteristics.

References

- · Khan, The Physics of Radiation Therapy, Chapter 8
- AAPM Task Group No. 69 Report (Radiographic Film)
- AAPM Task Group No. 55 Report (Radiochromic Film)
- AAPM Task Group No. 62 Report (Diode)
- AAPM Task Group No. 106 Report (Commissioning equipment and procedures)