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1)Provide an overview of the key concepts in 
IMRT plan optimization.

2)Review inverse planning techniques used for 
fixed field IMRT, VMAT, and tomotherapy.

3)Examine new optimization tools such as 
multicriteria optimization.

Objectives



Outline

1. The IMRT planning process
2. Defining treatment plan goals
3. Plan optimization
4. Future developments



1. The IMRT Planning Process



• Beam angles are set.
• Prescription is defined.

• Plan optimization is performed.
• A final dose calculation is performed.

O.K?

Approve plan for delivery.

no

yes



2. Defining the prescription



• The prescription defines the goals of 
the treatment.  

• The goals can be expressed in the
objective function or the constraints.

• The plan quality can be scored using 
either physical or biological criteria.



Prescription Challenge

• It is difficult to reduce all of our 
treatment planning goals into a set 
of equations or a single scoring 
function.



Objective Function

Courtesy of Rock Mackie

• The objective function 
reduces the entire 
treatment plan into a 
single numerical value 
that scores the quality of 
the  plan.

• This has the same 
advantages and 
limitations as assigning 
a numerical grade in a 
course.  It allows 
ranking to be done but it 
may not adequately 
define the overall intent.



Constraints
• Constraints place 

restrictions on the set of 
solutions that are 
considered feasible.

• Constraints define what is 
an acceptable solution.  
They do not define what is 
an optimal solution. 

• When conflicting 
constraints arise, there 
may not be any feasible 
solution.  

• The most basic constraint 
in IMRT is that all of the 
beam weights must be 
nonnegative.

Courtesy of Rock Mackie



Dosimetric Objective 
Functions/Constraints



Dosimetric (Physical) 
Objectives/Constraints

• Criteria than can be expressed in terms of 
well defined physical quantities, such as 
dose and volume. 

From Thomas Bortfeld



Dosimetric Constraints

• Target
– minimum dose
– maximum dose

• Sensitive Structures
– maximum dose
– mean dose
– DVH constraints

• no more than “x” % of the 
structure can exceed a dose of “y”.



Dosimetric Objectives

• Minimize sum of absolute differences 
between prescribed and delivered doses.

• Minimize sum of quadratic difference 
between prescribed and delivered dose.

• Minimize a weighted integral dose.
• Maximize the minimum dose to the target.



Advantages and Disadvantages 
of Dosimetric Objective 

Functions and Constraints



Minimum/Maximum Dose

• Constraints can be used guarantee adequate 
dose uniformity in the tumor.

• Useful for serial structures such as the spinal 
cord.

Advantages



Minimum/Maximum Dose

• Allowing small hot and/or cold spots are 
often provide a significant improvement in 
dose conformity.

• One point can dominate the optimization.
• If target and RAR are in close proximity, 

these constraints often cannot be satisfied.

Disadvantages



Mean Dose

• Easy to formulate.

Advantages

Disadvantages

• Of limited value for most sensitive 
structures.

• Dramatically different dose distributions can 
have the same mean dose.



(Doseprescribed – Dosedelivered)2

• Simple formulation.
• Higher penalty placed on outliers.
• Used in most commercial planning 

systems.

Advantages

Disadvantages

• May not sufficiently penalize underdosage in 
the target.



DVH Based 
Penalties/Constraints

• Good fit with clinical practices.
• Allows a portion of a sensitive structure to 

be overdosed in order to achieve adequate 
tumor dose coverage.

Advantages



DVH Based 
Penalties/Constraints

Disadvantages

• True DVH constraints necessitate binary 
variables (MIP formulation).

• Highly nonlinear.
• Multiple DVH constraints are often 

necessary to meet user’s objectives.



Biological Objective 
Functions and 
Constraints



Biological Objectives/Constraints (1)

• Biological objective functions and constraints 
are outcome related.

• Biological models are used to predict 
treatment outcome.



• Tumor Control Probability (TCP).
• Normal Tissue Complication Probability (NTCP).
• Uncomplicated TCP (UTCP or P+).
• Equivalent Uniform Dose (EUD).

Biological Objectives/Constraints (2)



• Tumor control probability (TCP).  The probability 
of local control given the planned dose 
distribution.

• Normal Tissue Complication Probability (NTCP).  
The probability of some defined undesirable 
effect on the patient due to the irradiation.

From Joe Deasy

Biological Objectives/Constraints (3)



TCP and NTCP as a Function of Dose

Holthusen (1936) Courtesy of Joe Deasy



• Two dose distributions are equivalent if 
the corresponding biological/clinical 
outcomes are equivalent.

Equivalent Uniform Dose (EUD)



Equivalent Uniform Dose (EUD)

EUD = viDi
a

i=1
∑

 

  
 

  

1
a

• Based on the power law
• Normal structures and targets.

*Niemierko A. Med Phys, 26(6), 1999.



Structure (Source) End-point a 
Chordoma base of skull (MGH) Local control -13 
Squamous cc (Brenner) Local control -13 
Melanoma (Brenner) Local control -10 
Breast (Brenner) Local control -7.2 
Parotids (Eisbruch) Salivary function (<25%) <0.5 
Parotids (Chao) Salivary function (<25%) 0.5 
Liver (Lawrence) Liver failure 0.6 
Liver (Dawson) Liver failure 0.9 
Lung (Kwa) Pneumonitis 1.0 
Lung (Emami) Pneumonitis 1.2 
Kidney (Emami) Nephritis 1.3 
Liver (Emami) Liver failure 2.9 
Heart (Emami) Pericarditis 3.1 
Bladder (Emami) Symptomatic contracture 3.8 
Brain (Emami) Necrosis 4.6 
Colon (Emami) Obstruction/perforation 6.3 
Spinal cord (Powers) White matter necrosis 13 
Esophagus (Emami) Perforation 18 
Spinal cord (Schultheiss) Paralysis 20 
 

Equivalent Uniform Dose (EUD)



EUD - unconstrained
EUD + tumor as  

“virtual normal tissue”

Dose-Volume

EUD Based 
Optimization

Wu, Mohan, Niemierko, Schmidt-Ullrich, 
Optimization of IMRT plans based on the 

equivalent uniform dose. Int J Radiat 
Oncol Biol Phys, 2002. 52(1))



EUD Based 
Optimization

Wu, Mohan, Niemierko, Schmidt-Ullrich, 
Optimization of IMRT plans based on the 

equivalent uniform dose. Int J Radiat 
Oncol Biol Phys, 2002. 52(1))



Biological Objectives

• Maximize TCP/EUD/P+.
• Minimize NTCP.

Biological Constraints

• Minimum TCP/EUD/P+.
• Maximum NTCP.



Biological 
Objectives/Constraints

Advantages

• Our goal is to improve patient outcome, 
and this is precisely what is modeled 
with these techniques.

Disadvantages

• Because of uncertainties in the 
parameters included in the models, the 
accuracy of the models is often called 
into question.



Physical vs. Biological Objective Functions

Courtesy of Rock Mackie



Typical Formulation in a Commercial TPS

• Minimizes a sum of weighted least squares 
deviations from the defined goals.

• The goals include:
– minimum and maximum target dose
– maximum dose for each sensitive structure
– DVH based treatment goals

• By increasing the relative weight assigned 
to a particular goal, you can increase the 
probability of meeting that goal.
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From Nucletron

Target

• Voxels below the specified minimum and above the 
specified maximum are penalized.



Small weight
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From Nucletron
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From Nucletron

DVH Based Penalties

• A weighted penalty is applied if the DVH goal is not satisfied.



2. Plan Optimization



Plan Optimization
Fixed Field IMRT

• Beamlet based optimization
• Direct aperture optimization



The Beamlet Model
Before an IMRT optimization, each beam is divided into 
a number of smaller beamlets (pencil beams), and the 
corresponding dose distributions are computed.



Beamlet Dose Distribution
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Beamlet-Based Inverse Planning
Beamlet weights are optimized to produce an 
optimized fluence map for each beam direction.



Leaf Sequencing
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    Optimized Fluence Map

Deliverable Apertures



From Optimized Intensity Map to Treatment
Leaf Sequencing

• The optimized treatment plan is not immediately 
ready for delivery.

• A leaf sequencing algorithm needs to be applied to 
translate the each optimized (theoretical) fluence 
map into a set of deliverable aperture shapes.

• The constraints imposed by the multileaf 
collimator are accounted for in the leaf sequencing 
step.

From Nucletron



Beamlet-Based Inverse Planning

• Two-step approach to treatment planning:

1. Fluence map optimization
2. Leaf sequencing – Accounts for delivery 

constraints of MLC

• Was employed by nearly all commercial 
vendors:

• Corvus (NOMOS).
• Pinnacle (ADAC).
• Plato (Nucletron).
• Xio (CMS)
• Theraplan (MDS Nordion) 



Deficiencies of Beamlet-based Inverse Planning
Step and Shoot IMRT

1. The plans require a large # of segments 
and a large # of monitor units.  The 
leads to long treatment times.

2. There can be significant degradation in 
the plan quality as a result of the leaf 
sequencing process therefore making it 
difficult to create a final plan that meets 
all of the specified goals.



Beamlet-based Inverse Planning
Sliding Window

• Sliding window is MU inefficient but can 
delivery quickly due to the lack of 
intersegment delays.



1. Inverse planning technique where the 
aperture shapes and weights are optimized 
simultaneously.

2. All of the MLC delivery constraints are 
included in the optimization

3. The number of aperture per beam angle is 
specified in the prescription.

Direct Aperture Optimization (DAO)



DAO Optimization via Simulated Annealing

1) Pick a parameter (leaf position, aperture weight) 
randomly

2) Change the parameter by a random amount
3) Calculate objective function based on the new 

dose distribution
4) Objective function lower: accept change
5) Objective function higher: accept change with 

certain probability



Prescription: 3 apertures per angle
Begin with 3 identical copies



Pick an Parameter and Make a Change

Aperture 1
Leaf pair 6
Left leaf position
Move leaf in 2cm



Keep or Reject the Change

Based on:

1. MLC constraints.
2. Cost function & Annealing Rules.



MLC Constraints

1)  Opposed leaves 
cannot come closer 
than 1-cm from one-
another

2)  Opposed-adjacent 
leaves cannot come 
closer than 1-cm from 
one-another

< 1cm

Not allowed

< 1cm

Not allowed

Some sample Elekta constraints:



After numerous iterations...

Add them up along with their weights…



Final intensity map from DAO



Small number of apertures can produce large
number of intensity levels

Example:  3 apertures/angle

3 separate
weights

1 2 3 4 5 6 7



Small number of apertures can produce large
number of intensity levels

12 −= n
nN

N = Number of intensity levels
n = Number of apertures

For 3 apertures, 7 intensities
For 4 apertures, 15 intensities
For 5 apertures, 31 intensities
For 6 apertures, 63 intensities



DAO - Benefits

1. Highly conformal IMRT plans with only 
3 to 5 apertures per beam. 

2. MU efficient and efficient delivery
3. Can be used for IMAT treatment 

planning.



4. Optimizing the fluence



Optimization Techniques

• Various optimization techniques have been 
employed to optimize fluence maps or 
aperture shapes in IMRT planning.

• IMRT plan optimization poses a very 
challenging optimization problem due to size 
of the problem and the inclusion of complex 
nonlinear functions such as DVH constraints.



Optimization Techniques

• Linear Programming
• Nonlinear Programming
• Mixed Integer Programming
• Iterative Techniques

Deterministic



Optimization Techniques

• Simulated Annealing
• Genetic Algorithms
• Tabu search.

Stochastic



Evaluating the Techniques

• Is it robust?
• Is it flexible?
• Is it fast?
• Do plans deliver efficiently?



IMAT Treatment Planning



IMAT Plan Optimization
Elekta VMAT/Varian Rapid Arc

• IMAT treatment planning represents a 
particularly complex optimization problem.

• This is due to: (1) the size of the problem 
and (2) the need to account for the 
interconnectedness of the beam shapes as 
the gantry rotates from one beam angle to 
the next.



• Treatment plans were 
developed using 
forward planning or 
simple beam shaping 
based on the patient’s 
anatomy.

• The dose rate was 
constant as the 
gantry rotated around 
the patient.

First Generation IMAT
2000-2007

• Treatment plans with 
full inverse planning.

• The dose rate varies
as the gantry rotates 
around the patient.

Next Generation IMAT
2008-



IMAT Inverse Planning Solutions

• Varian → Eclipse RapidArc 
• Philips → Pinnacle SmartArc
• Elekta → Monaco VMAT
• Nucletron → Oncentra MasterPlan VMAT
• Siemens/Prowess → Prowess Panther





DAO for IMAT

• The key feature of DAO is that all of 
the delivery constraints are included 
directly into the IMAT optimization.

• The optimizer starts by matching the 
shapes to the BEV of the target.

• Throughout the optimization the MLC 
leaf position are optimized but they 
are never allowed to violate the 
delivery constraints.



IMAT Constraints

Leaves cannot change by a certain amount based 
upon
a)  Maximum leaf travel speed
b)  Gantry speed

θ = 45

e.g.  If gantry speed is 10 degrees/sec and leaf travel speed is 2 cm/sec, 
maximum leaf travel between two adjacent angles is 2-cm

d = 4 cmd = 0 cm

θ = 35

Aperture for θ = 45 Aperture for θ = 35

Not 
allowed





Eclipse VMAT

• In Otto’s paper, he used DAO to 
produced IMAT plans.

• Two key innovations:
1. Focused on a single arc approach with more 

control points in the single arc.  Termed “VMAT”.
2. Progressive sampling was used to improve the 

speed of the algorithm.

• This is the approach utilized in Eclipse



Varian Eclipse

• Planning is performed using Direct Aperture Optimization.
• Typical plan uses 1 arc with 177 control points.
• For some cases, multiple arcs are use to improve the plan 

quality or provide adequate coverage of large targets.



Varian Eclipse

• Composite dose for H&N patient treated at UMMS.
• Initial = 50.4 Gy, SFB1 = 9Gy, SFB2=10.8Gy

Courtesy of Warren D’Souza



Varian Eclipse

Lt. 
Parotid

Spinal 
Cord

Mandible

PTV1

PTV2

PTV3

• Initial plan and SFB1 used 2 arcs, SFB2 used 1 arc
• Delivery time = 1.5 minutes per arc

Courtesy of Warren D’Souza



1. Add a dynamic arc beam
2. Specify couch, collimator, and beam angles
3. Specify dose objectives 
4. Specify SmartArc optimization parameters
5. Optimize
6. Compute final convolution dose

Courtesy Kevin Reynolds

Philips Pinnacle – SmartArc
Planning Steps



SmartArc Optimization (1)

1. Beams are generated at the start and 
the stop angles and at 24° increments 
from the start angle.

2. A fluence map optimization is 
performed.

3. The fluence maps are sequenced and 
filtered so that there are only 2 control 
points per initial beam angle.

Courtesy of Philips Medical



SmartArc Optimization  (2)

4. These control points are distributed to 
adjacent gantry angles and additional 
control points are added to achieve the 
desired final gantry spacing. 

5. All control points are processed to comply 
with the motion constraints of VMAT.

Courtesy of Philips Medical



SmartArc Optimization (3)

6. The DMPO algorithm is applied with an 
aperture based optimization that takes into 
account all of the VMAT delivery constraints.

7. The jaws are conformed to the segments 
based on the characteristics of the linac.

Courtesy of Philips Medical



H&N – Treated with SmartArc

• 2 arc H&N delivery



H&N – Treated with SmartArc



H&N – Treated with SmartArc

PTV70

Sp. 
Cord

Mandible

Brainstem

PTV50

Parotids



Plan Optimization
Tomotherapy (1)

• The rotational nature of tomotherapy 
combined with the binary MLC means 
that typical plans include tens of 
thousands of beamlets.

• This give great flexibility in shaping the 
dose distribution but makes this is very 
data intensive optimization problem.



Plan Optimization
Tomotherapy (2)

• Tomotherapy planning requires the 
selection of parameters such as the pitch, 
field width, and modulation.



MLC

Jaws

Field Width
6MV source

MVCT 
detector 
system

• Jaws define the 
field size along 
the y-axis: 
1.05, 2.50, or 
5.02 cm FWHM 
at iso.



Pitch

• Pitch < 1: Overlap 
from one rotation 
to the next (more 
tightly wound 
helix).

Pitch > 1
Pitch = 1



Modulation Factor (MF)

• The modulation factor limits the range of 
allowable leaf open times.

• This give the user a key tool striking the 
optimal balance between conformality 
and efficiency.



Optimization Panel



4. Future Developments: 
Multicriteria Optimization



 -----Original Message----- 
From:  Cornell, Mariel J.   
Sent: Friday, October 26, 2007 8:21 AM 
To: Hong, Theodore S.,M.D. 
Subject: C*** 
 
Hi, 
I played around with Ms C***'s plan all day yesterday, but even with relaxing the Rt Kidney 
restraints, the liver and stomach doses don't budge. If I push it, the PTV and CTV coverage really 
suffers.  Are you willing to sacrifice their coverage or would you prefer to go with the plan you 
reviewed the other day? She's coming this afternoon for VSim. 
 
Thanks, 
Mariel 
 
 

Courtesy of Thomas Bortfeld



Human Iteration Loop

• Dose prescription , weight factors, …
• Optimization
• Plan evaluation

5 – 10 times

Courtesy of Thomas Bortfeld



Treatment planning has multiple objectives

…

Courtesy of Thomas Bortfeld



Pareto Optimization

• Pareto efficient situations are those in which it is 
impossible to make one person better off without 
necessarily making someone else worse off.

• A treatment plan is Pareto optimal if there is no 
other treatment plan that is at least as good in 
all objective functions and strictly better in one 
objective function value. 



Multicriteria Optimization (MCO)

• A series of Pareto optimized solutions are 
produced. 

• An interactive plan navigation tool can then 
be employed explore the optimal tradeoff 
between the planning goals for the patient.

• This can be done in minutes (as opposed to 
hours or days for the conventional method)



















• Symposium on MCO on Tuesday at 4 pm 
(Room 204C). 



Plan Optimization - Summary

• Developing a base understanding of 
optimization terminology and techniques 
assists in maximizing the capabilities of 
inverse planning solutions.

• There is a wide variation in the quality of 
inverse planning solutions on the market.

• The future may provide us with more 
interactive tools that should speed up the 
planning process and provide improved plan 
quality.



Thank you!!



# of arcs

• The user can set up one arc and have SmartArc 
create a dual arc plan where the second arc has 
the same setup as the first, but rotates in the 
opposite direction.

• The algorithm behind the dual arc feature 
strives to reduce leaf travel by distributing 
control points between the two arcs based on 
the shapes of the segments.

Courtesy of Karl Bzdusek



# of arcs



1 arc vs. 2 arcs



1 arc vs. 2 arcs



1 arc vs. 2 arcs

Solid lines: 2 arcs
Dashed lines: 1 arc

Delivery time: 1 arc= 124 sec, 2 arcs = 181 sec



2 arcs vs. 3 arcs

Solid lines: 2 arcs
Dashed lines: 3 arcs

Delivery time: 2 arcs = 181 sec, 3 arcs: 293 sec



Maximum delivery time per arc



Delivery time

Thin solid: 60 sec/arc
Thin dashed: 90 sec/arc
Med. solid: 180 sec/arc
Med. dashed: 240 sec/arc



Delivery time

Maximum time
(sec/arc)

Estimated time
(sec)

60 140
90 181
180 325
240 356



Leaf motion constraint



Leaf motion

Thin solid: 1 mm/deg
Thin dashed: 3 mm/deg 
Med. dashed : 5 mm/deg
Med. solid : 10 mm/deg



Leaf motion

Leaf motion
(mm/deg)

1 3 5 10

Estimated 
delivery time 

(sec)
303 315 325 376

Actual delivery 
time (sec) 218 250 300 427

QA passing 
rate (%) 98.3 99.0 98.7 98.1



SmartArc Planning Parameters

• 1 arc is sufficient for simple cases such as 
prostate, but 2 arcs are needed for more 
complex cases such as H&N.

• We typically set a delivery time of 90sec/arc.
• We generally restrict the leaf motion to be 

3mm/degree of gantry rotation for prostate 
cases and 4 or 5mm/degree for H&N cases.



Biological Modeling
Biological cost functions allow us to model tissue-specific 
dose responses, that is the volume effect.

Tumor 
(sensitive to cold spots)

Serial 
(small volume effect)

Parallel 
(large volume effect)

But, for treatment planning, these cost functions really allow us to 
control the shape of the DVH…

Courtesy of Elekta



Maximum Dose Cost Function
(Controls only a single point on DVH)

Spinal Cord < 45 Gy

45 Gy

Vo
lu

m
e

Controlling the DVH (Serial Tissues)

Biological Modeling: Controlling the DVH 
Serial Tissues

Courtesy of Elekta



EUD-based Serial Cost Function
(Controls many points on DVH, emphasis on 

high doses)

dose

Vo
lu

m
e

Controlling the DVH (Serial Tissues)

Biological Modeling: Controlling the DVH
Serial Tissues

Spinal Cord

EUD < 35 Gy

Courtesy of Elekta



dose
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Controlling the DVH (Serial Tissues)

Biological Modeling: Controlling the DVH
Parallel Tissues

DVH Cost Function
(Controls only a single point on DVH)

50 % of parotid 
< 30 Gy

30 Gy

50 %

Courtesy of Elekta



dose
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Controlling the DVH (Serial Tissues)

Biological Modeling: Controlling the DVH
Parallel Tissues

Parallel Model Cost Function
(Controls many points on DVH, emphasis on 

mean dose)

Mean dose of 
30 Gy is 
expected to 
damage 50 % 
of parotid

30 Gy

50 %

Courtesy of Elekta



Optimization via Simulated Annealing

1) A pencil beam is selected randomly.
2) The pencil beam weight is changed by a 

random amount.
3) The new dose distribution is determined 

along with the corresponding objective 
function.

4) Objective function lower: accept change.
5) Objective function higher: accept change 

with certain probability.





MLC Constraints

Every multi-leaf collimator has delivery 
constraints:

1)  Opposed leaves 
cannot come within 1-
cm of one-another

2)  Opposed-adjacent 
leaves cannot come 
within 1-cm of one-
another

< 1cm

Not allowed

< 1cm

Not allowed

Some sample Elekta constraints:



Courtesy of Shirley Small

• Prostate and seminal vesicles plotted with 97% iso-
cloud. 

• 1 arc, 652 MUs, 1.7 minute delivery



• H&N prescription levels of 54, 59.6, and 70 
Gy

Courtesy of Shirley Small



Courtesy of Shirley Small

• 1 arc, treatment time ≈ 2 
minutes

cord

parotids

PTV54

PTV59.6

PTV70



Courtesy of Shirley Small

• Spine SBRT, 2 arcs, 4 minute delivery
• 95, 80, 50% isodose lines



Monaco VMAT



• Markus Alber, a researcher at the University 
of  Tübingen developed a treatment 
planning system called Hyperion.

• Two key feature of Hyperion are: (1) Monte 
Carlo based dose calculation and (2) Biology 
based IMRT optimization.

• Computerized Medical Systems (CMS) 
licensed the Hyperion system and created a 
commercial version called Monaco.

Monaco Background (1)



• Monaco 1.0 was released July 2007 as an 
IMRT-only planning system.

• In 2008, Elekta acquired CMS and began 
work to put a VMAT inverse planning 
solution into Monaco.

• Beta versions of the VMAT solution shipped 
in spring of 2010.

Monaco Background (2)



• First optimized fluence maps are produced 
at a series of discrete beam angles.

• These optimized fluence are then converted 
into deliverable VMAT arcs.

Monaco VMAT Algorithm



• Monaco produces plans using a “sweeping 
leaf sequencer” where the leaves move 
unidirectionally across the field.

• The leaf movement continues to alternate 
between sectors of the arc. 

Monaco – Sweeping Window



Monaco VMAT
Case #2 - Prostate

• 180 cGy/fraction, 678 MU
• Delivery time = 3 min 54 

sec



Monaco VMAT
Case #2 - Prostate



Monaco VMAT
Case #2 - Prostate



Solid = Monaco VMAT
Dashed = SmartArc



Monaco - Summary

• Monaco will serve as Elekta’s VMAT 
planning solution.

• Monaco VMAT is in Beta testing.
• Initial results are promising, but it is 

unclear if Monaco VMAT works well for 
the most complex cases.



Philips Pinnacle - SmartArc

• SmartArc is an extension of the DMPO 
planning functionality in Pinnacle.

• The SmartArc planning tools were 
developed by RaySearch (Stockholm).



146

SmartArc Features

• Works with VMAT-capable Varian and Elekta 
linacs

• Plans can be created with constant or variable 
dose rates

• Single or multiple arcs covering 90 to 360°
• Dose objectives can be changed during 

optimization
• Coplanar or non-coplanar plans

Courtesy Kevin Reynolds



Summary of SmartArc 
Clinical Cases

• 30 patients treated covering a variety of 
treatment sites including lung, head-and-
neck, liver, pancreas, esophagus, brain, and 
chest wall.

• 1 arc used in 19 cases
• 2 arcs used in 11 cases.
• Average delivery time: 1 arc cases = 1.9 

minutes, 2 arc cases = 3.9 minutes.



Nucletron – Oncentra VMAT

• The Oncentra VMAT module was developed 
by RaySearch Laboratories, a software 
development company located in 
Stockholm.

• RaySearch also developed the SmartArc 
module for Pinnacle.

• The underlying VMAT planning engine is the 
same.



Nucletron – Oncentra VMAT



Prostate Verification

1-arc VMAT γ(3%,1mm)

planned

measured



VMAT γ(3%,3mm)

planned

measured

H&N Verification



Nucletron – Oncentra VMAT

• Oncentra VMAT was released in December 
2009.

• 14 sites have been installed in Europe (non 
are clinical).

• No sites in the U.S. at this time.



Siemens/Prowess CBT

• Prowess’ Direct Aperture Optimization 
algorithm is used to develop VMAT plans for 
delivery on Siemens linacs.

















Objectives/Constraints used in 
Radiation Therapy

• Dosimetric Objective Functions/Constraints
• Definition
• Possible objective functions
• Possible constraints
• Advantages and disadvantages

• Biological Objective Functions/Constraints
• Definition
• Possible objective functions
• Possible constraints
• Advantages and disadvantages



Is it robust?

• “A system that holds up well under 
exceptional conditions.”

• Does it work well for tumors of any 
size and shape?

• Can it avoid local minima?
• Does it produce efficient plans?



Is it flexible?

• Each physician will have his or 
her personal preferences as to 
what constitutes an “optimal” 
plan.



Is it fast?

• IMRT treatment planning is an 
iterative approach typically requiring 
multiple optimizations.

• Can you interact real-time during the 
IMRT optimization?



Current IMRT optimization 
(“inverse planning”), single score

IMRT optimization finds the plan that 
yields the best score F while considering 
given constraints

Note: F is a single number (grade, score)!

+⋅+⋅+⋅= Risk2Risk2Risk1Risk1TargetTarget FwFwFwF

weights, penalties, importance factors

objectives, costlets, indicators

…

Courtesy of Thomas Bortfeld



Three steps of multi-criteria 
Pareto

IMRT optimization (MCO):
1. Setting the planning “horizon”
2. Calculating the Pareto surface
3. Interactive plan navigation 

Courtesy of Thomas Bortfeld



• DAO reduced the number of segments 
by up to 95%.

• DAO reduced MU by up to 80%.
• Note: Results specific to Elekta and 

Corvus.

Comparison with Beamlet-based
Inverse Planning



Simulated annealing 
optimization

Pick a parameter:
(eg.  5th leaf of 4th

angle in 2nd arc)

Sample size of 
change from a 
Gaussian 
distribution

Make the 
change



Delivery constraints
Does this change satisfy the delivery constraints?

Yes:  Calculate new dose based on this change and 
compute the objective function
No:  Immediately reject change and select a new 
change



Comparison with Beamlet-based
Inverse Planning

• A direct comparison was made between 
DAO and Corvus for four clinical cases.

• In each case, we sought equivalent 
treatment plan quality.



RaySearch MCO prototype

Courtesy of Thomas Bortfeld



RaySearch MCO prototype

Courtesy of Thomas Bortfeld



Courtesy of Philips Medical





Simulated Annealing (1)

• DAO uses simulated annealing, an optimization 
technique using random sampling techniques.

• The term simulated annealing derives from the 
roughly analogous physical process of heating 
and then slowly cooling a substance to obtain a 
strong crystalline structure. 

• In each simulation, a minima of the cost function 
corresponds to this ground state of the 
substance.



Simulated Annealing (2)

• The basic principle is that by allowing occasional 
ascent in the search process, we might be able to 
escape the trap of local minima.

Help escaping the 
local optima.



Prostate Pancreas Head/neck

Corvus
348 seg.
2135 MU

588 seg.
2769 MU

216 seg.
1726 MU

P3IMRT
72 seg.
552 MU

134 seg.
616 MU

118 seg.
737 MU

DAO
27 seg.
315 MU

18 seg.
365 MU

30 seg.
397 MU

Comparison with Beamlet-based
Inverse Planning



Simulated Annealing (1)

• An optimization technique using random 
sampling techniques.

• The term simulated annealing derives from the 
roughly analogous physical process of heating 
and then slowly cooling a substance to obtain a 
strong crystalline structure. 

• In each simulation, a minima of the cost function 
corresponds to this ground state of the 
substance.



Simulated Annealing (2)

• The basic principle is that by allowing occasional 
ascent in the search process, we might be able to 
escape the trap of local minima.

Help escaping the 
local optima.



Simulated Annealing 
Objective/Constraints

• All linear and nonlinear objectives can 
be used.

• Highly nonlinear functions are not 
problematic.



Simulated Annealing - Advantages

• Easy to implement, no commercial 
software required.

• Provides significant flexibility in defining 
the problem.

• Able to escape local minima.

Simulated Annealing - Disadvantages

• Inefficient.



DAO Optimization

• A simulated annealing algorithm is used 
to optimize the MLC leaf positions and 
aperture weights.

• After each change in an MLC leaf 
position, the algorithm checks to see if 
any of the delivery constraints are 
violated.  If so, the change is rejected.

• Otherwise, the change is accepted based 
on the rules of simulated annealing.



In IMAT, an arc is approximated by a 
series of fixed beams.



Dynamic Source Model

Gantry 
Arc

Sample
Spacing

Sampling Flexibility Accuracy

Coarse √ X

Sampling Flexibility AccuracySampling Flexibility Accuracy

Coarse √

Courtesy of Karl Otto



Dynamic Source Model

Gantry 
Arc

Sample
Spacing

Sampling Flexibility Accuracy

Coarse √ X

Fine √

Sampling Flexibility Accuracy

Coarse √ X

Fine X √

Sampling Flexibility Accuracy

Coarse √ X

Courtesy of Karl Otto



Progressive Sampling

Gantry 
Arc

Sample
Spacing

4

3

2

1

5

7

8

6

9

10

12
13

11
Sampling Flexibility Accuracy

Coarse √ X

Fine X √

Sampling Flexibility Accuracy

Coarse √ X

Fine X √

Progressive √

Sampling Flexibility Accuracy

Coarse √ X

Fine X √

Progressive √ √

Courtesy of Karl Otto



User Inputs:
Modulation Factor (MF)

• A balancing act between conformality and 
efficiency:
– Conformality: If some beam angles are better 

than others for treating the target and 
avoiding sensitive structures, unequal 
weighting of beamlets can yield a better DVH.

– Efficiency: The most efficient way to deliver all 
the dose is to weight all the beamlets equally 
because:

• The gantry speed (which is constant for a given 
plan) must be slow enough to accommodate the 
longest beamlet open time in the plan.



User Inputs:
Modulation Factor (MF)

• The Modulation Factor limits 
the range of leaf-open times:

• The user-defined MF sets an 
upper limit on the range of 
open times for “used” 
beamlets.

• Large MF’s create plans with a 
large fraction of small leaf-open 
times, which have larger 
uncertainties.

• Typical MF’s: 
– 1.8 for prostate

– 2.4 for Head & Neck

• Increasing the MF:
– Increases delivery time 

(generally linearly with MF)

– Decreases efficiency

• Decreasing the MF may 
degrade dose conformity.









=

Time Open Avg
Time OpenMax FactorModulation



1 2 4 6 8 10 12 16 20

1

10

100

1000

10000

Beam Sample Spacing (deg)

Fi
na

l C
os

t V
al

ue
0.5 1 2 3 4 5 6 8 10
Maximum MLC Leaf Sample Spacing (cm)

Progressive Sampling

Fixed Sampling

Progressive Sampling

Courtesy of Karl Otto



Modulation Factor (MF)
• The Modulation Factor 

limits the range of leaf-
open times:

• The user-defined MF sets 
an upper limit on the range 
of open times for “used” 
beamlets.

• Large MF’s create plans 
with a large fraction of 
small leaf-open times, 
which have larger 
uncertainties.

• Typical MF’s: 
– 1.8 for prostate

– 2.4 for Head & Neck

• Increasing the MF:
– Increases delivery time 

(generally linearly with MF)

– Decreases efficiency

• Decreasing the MF may 
degrade dose conformity.









=

TimeOpen  Avg
TimeOpen Max FactorModulation



TomoTherapy® Inverse
Planning System

Planning Preparation

Acquire Planning Image
Contour Planning Image
Import Planning Image

“ROIs” Panel

Choose Target(s)
Choose Sensitive Structures

Set Overlap Priorities
Set Red Laser Positions

“Optimization” Panel

Choose Prescription 
(Primary DVH Point)

Choose Field Width & Pitch
Choose Constraints

(Importance & Penalties)
Choose Optimization Method

Limit Leaf Modulation

Calculate Optimized Plan
Get Full Dose

“Fractionation” Panel

Choose # of Fractions
Get Final Dose

(Include MLC Properties)
Final Accept
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