#### Physics of the TG-51 dosimetry protocol

D. W. O. Rogers,
Carleton Laboratory for
Radiotherapy Physics.
Physics Dept,
Carleton University,
Ottawa



http://www.physics.carleton.ca/~drogers

AAPM 2009 Summer School, June 22

Colorado Springs, Co
Ch 9 of book

Canada's Capital University



#### General formalism: definitions

$$D_w^Q = MN_{D,w}^Q$$

defines: chamber's absorbed dose calibration coefficient

$$N_{D,w}^Q = k_Q N_{D,w}^{^{60}Co}$$

defines  $k_Q$ : chamber specific beam quality conversion factor

-accounts for  $N_{D,w}$  variation with Q

for e-beams

$$k_Q=P_{gr}^Q k_{R_{50}}$$

defines  $k_{R50}$ : component of  $k_Q$  which is independent of  $P_{gr}$ , the gradient at point of measurement.



#### General formalism: definitions

$$k_{
m ecal} = k_{R_{
m 50}}^{Q_{
m ecal}}$$

defines  $k_{ecal}$ : chamber specific photon-electron conversion factor

- $Q_{ecal}$  an arbitrary e- energy -accounts for  $N_{D,w}$  variation between  $^{60}Co$  and  $Q_{ecal}$ 

$$k_{R_{50}}=k_{R_{50}}^{\prime}k_{
m ecal}$$

defines k'<sub>R50</sub>: chamber specific electron quality conversion factor

-accounts for  $N_{D,w}$  variation between  $Q_{ecal}$  and  $R_{50}$ 



#### General formalism: dose equations

These 5 definitions lead to two dose equations

$$D_w^Q = M k_Q N_{D,w}^{^{60}Co}$$

Canada's Capital University

$$D_{
m w}^Q = M P_{gr}^Q \ k_{R_{50}}' \ k_{
m ecal} N_{
m D,w}^{^{60}Co}$$

 $P_{gr}$  is part of  $k_Q$  for photon beams since the same for all beams of same quality.

For e-beams P<sub>gr</sub> varies for a give beam quality, R<sub>50</sub>, - thus must be explicitly found for each beam

# General formalism: N<sub>D,w</sub> relationships





### Where does $k_Q$ come from?

Basically - same physics as TG-21, ie Spencer-Attix cavity theory but without the complexity of changing from an air kerma calibration coefficient to an absorbed-dose measurement.

$$D_{ ext{med}} = D_{ ext{air}} \left(rac{\overline{L}}{
ho}
ight)_{ ext{air}}^{ ext{med}} P_{ ext{wall}} P_{fl} P_{gr} P_{ ext{cel}} K_h$$

P<sub>wall</sub> corrects for the wall not being the same as med

P<sub>cel</sub> corrects for an aluminum central electrode not being wall material

 $K_h$  accounts for measurements being in humid air but arleton all factors refer to dry air  $(K_h = 0.997)$ 

## $P_{repl} = P_{gr} P_{fl}$

P<sub>repl</sub> accounts for effects of cavity on electron spectrum that would be present at point of measurement

 $P_{gr}$ : that part of  $P_{repl}$  which accounts for less attenuation in cavity than in phantom.

- -usually only thought to apply to cylindrical chambers
- -depends on local gradient => no effect at d<sub>max</sub>
- -handled by:
- effective point of measurement when measuring dose distributions (0.5/0.6  $r_{cav}$  offset for e-/photon beams)
- measuring at  $d_{max}$  in e- beams (TG-21)
- $extstyle{P_{gr}}$ , a correction factor: for e- beams  $P_{gr} = rac{M_{ ext{raw}}(d_{ ext{ref}} + 0.5 r_{ ext{cav}})}{M_{ ext{raw}}(d_{ ext{ref}})}$ 
  - -photon beams dealt with later

## $P_{repl} = P_{gr} P_{fl}$

P<sub>fl</sub>: that part of P<sub>repl</sub> which accounts for other changes in the spectrum in the cavity.

#### Photon beams

Not required past d<sub>max</sub> because of transient charged particle equilibrium and

Fano theorem tells us spectrum is independent of density and to extent that water is like air, the theorem applies.

#### Electron beams

Fluence in cavity increases due to lack of out-scatter and hence  $P_{\rm fl} < 1$ 



#### Deriving equations for $k_Q$ etc

$$D_{ ext{med}} = D_{ ext{air}} \left(rac{\overline{L}}{
ho}
ight)_{ ext{air}}^{ ext{med}} P_{ ext{wall}} P_{fl} P_{gr} P_{ ext{cel}} K_h$$

$$D_{\mathrm{air}} = rac{M}{m_{\mathrm{air}}} \left(rac{W}{e}
ight)_{\mathrm{air}}$$

-M is fully corrected charge

From defn  $N_{\mathrm{D,w}}^{\mathrm{Q}}$ 

$$N_{ ext{D,w}}^{ ext{Q}} = rac{D_{ ext{w}}^{ ext{Q}}}{M}$$

-combining D<sub>med</sub> & D<sub>air</sub> eqns gives

$$N_{
m D,w}^{
m Q} = rac{K_h}{m_{
m air}} \left(rac{W}{e}
ight)_{
m air} \left(rac{\overline{L}}{
ho}
ight)_{
m air}^{
m w} P_{
m wall} P_{
m fl} P_{
m gr} P_{
m cel}$$



### Equation for $k_Q$

defn of k<sub>Q</sub> implies

$$k_{Q}=\left.N_{D,w}^{Q}
ight/N_{D,w}^{^{60}Co}$$

-and from before: 
$$N_{
m D,w}^{
m Q}=rac{K_h}{m_{
m air}}\left(rac{W}{e}
ight)_{
m air}\left(rac{\overline{L}}{
ho}
ight)_{
m air}^{
m w}P_{
m wall}P_{
m fl}P_{
m gr}P_{
m cel}$$

- assuming W/e constant gives

$$k_Q = rac{\left[\left(rac{\overline{L}}{
ho}
ight)_{
m air}^{
m w} P_{
m wall} P_{
m fl} P_{
m gr} P_{
m cel}
ight]_{
m Q}}{\left[\left(rac{\overline{L}}{
ho}
ight)_{
m air}^{
m w} P_{
m wall} P_{
m fl} P_{
m gr} P_{
m cel}
ight]_{
m 60Co}}$$



-applies to electrons and photons
-but only used for photons

#### Equations for kecal &



-from defins of  $k_{
m ecal}$  &  $k'_{R_{50}}$  &  $N_{
m D,w}^{
m Q} = rac{K_h}{m_{
m air}} \left(rac{W}{e}
ight)_{
m air}$ 

 $P_{
m wall}P_{
m fl}P_{
m gr}P_{
m cel}$ 

$$k_Q=P_{gr}^Q k_{R_{50}}$$

$$k_{
m ecal} = k_{R_{
m 50}}^{Q_{
m eca}}$$

$$k_{Q} = P_{gr}^{Q} k_{R_{50}}$$
  $k_{
m ecal} = k_{R_{50}}^{Q_{
m ecal}}$   $k_{R_{50}} = k_{R_{50}}' k_{
m ecal}$ 

$$k_{ ext{ecal}} = rac{\left[\left(rac{\overline{L}}{
ho}
ight)_{ ext{air}}^{ ext{w}} P_{ ext{wall}} P_{ ext{fl}} P_{ ext{cel}}
ight]_{Q_{ ext{ecal}}}}{\left[\left(rac{\overline{L}}{
ho}
ight)_{ ext{air}}^{ ext{w}} P_{ ext{wall}} P_{ ext{fl}} P_{ ext{gr}} P_{ ext{cel}}
ight]_{60 ext{Co}}}$$

a constant for a given chamber

$$k_{R_{50}}' = rac{\left[\left(rac{\overline{L}}{
ho}
ight)_{\mathrm{air}}^{\mathrm{w}} P_{\mathrm{wall}} P_{\mathrm{fl}} P_{\mathrm{cel}}
ight]_{Q}}{\left[\left(rac{\overline{L}}{
ho}
ight)_{\mathrm{air}}^{\mathrm{w}} P_{\mathrm{wall}} P_{\mathrm{fl}} P_{\mathrm{cel}}
ight]_{Q_{\mathrm{ecal}}}}$$

=1.00 for  $R_{50} = Q_{ecal}$ 



#### Beam quality specification

- need to specify beam quality to select  $k_Q$  and  $k'_{R50}$
- goal is to uniquely determine a single  $k_{\mathbb{Q}}$  value for a given beam quality
  - this depends mostly on specifying a single stopping-power ratio

#### Photon beams

 $%dd(10)_{X}$  is photon component of percentage depth-dose at 10 cm depth in a 10x10 cm<sup>2</sup> field defined on surface of water phantom at 100 cm SSD

TG-51 uses  $%dd(10)_X$  because it makes  $k_Q$  values independent of what type of beam they are in.



# Beam quality specification: Why TPR is not ideal

Heavily
filtered
"clinical"
beams are on
upper curve.

NRC soft beams (used to measure  $k_Q$ ) and FFF beams are below.





# Beam quality specification: Why use %dd(10)<sub>x</sub>





## Extracting photon component of %dd(10) removing e- contamination effects

 $e^-$  contamination affects  $D_{max}$  and hence %dd(10) at or above 10 MV

 $%dd(10)_{x} = %dd(10)$  (below 10 MV)

else

 $%dd(10)_{x} = 1.267\%dd(10) - 20.0$ 

for 75% < %dd(10) < 90% with 50 cm clearance (±2%)

The above is based on very scattered data and only approximate.

Can we do better?



#### Electron contamination



Canada's Capital University

16/45

#### Correction for e contamination

$$f_e' = rac{\% dd (10)_{ extsf{x}}}{\% dd (10)_{ extsf{Pb}}}$$

BEAM code + ``tricks" used to calculate with high precision

The PDD measurements with the lead foil in place are used to extract the PDD for the photon only component of the beam.



#### Correction vs %dd(10)<sub>Pb</sub>



Med Phys 26 (1999) 533

 $\%dd(10)_{\mathsf{x}} = \left[0.8116 + 0.00264\%dd(10)_{\mathsf{Pb}}\right]\%dd(10)_{\mathsf{Pb}}$ 



[foil at 30 cm,  $\%dd(10)_{Pb} \ge 71\%$ ]

#### How important is correction?

Say  $f_e'$  wrong by 1% (ie. a 50% error) near %dd(10)<sub>x</sub>=80%.

 $\Rightarrow$  %dd(10)<sub>x</sub> is 80.8%, not 80.0%

 $\Rightarrow$  error in  $k_Q$  is 0.17%

Ignore correction => 0.35% error in  $k_Q$ 

TG-51 is not sensitive to accounting accurately for e-contamination.



## Beam quality specification in e-beams: What's wrong with $E_0$ =2.33 $R_{50}$ ?

It doesn't work
-parallel beams
-mono-energetic

Realistic beams at SSD=100 show variation





Ding et al Med Phys 23 (1996) 361

## Beam quality specification in e- beams: realistic electron beam sprs

R<sub>50</sub>=8.1 cm

 $d_{ref}$ =4.8 cm





#### Effects of realistic sprs





# Solution re realistic sprs-change dref: $d_{ref}=0.6R_{50}-0.1$





#### Measuring $R_{50}$ via $I_{50}$

We measure I<sub>50</sub> but need R<sub>50</sub>

$$R_{50} = 1.029I_{50} - 0.063 \qquad (I_{50} \le 10 \ cm)$$

$$R_{50} = 1.059I_{50} - 0.37 \qquad (I_{50} > 10 \ cm)$$

Calculations
ignore all
corrections
except spr
going from dose
to ionization





Ding et al Med Phys 22 (1995) 489

#### Physical data sets in TG-51

Much of data comes directly from TG-21 and/or IAEA's TRS-277 (1987 Code of Practice).

TG-21 used different stopping power data for e- and photon beams (ICRU Reports 37 and 35 respectively).

TG-51 consistently uses ICRU Report 35 stopping powers. For photon beams, based on Monte Carlo calculations for 25 different beams:



Burns et al eqn for e- beams is also based on ICRU Report 37 stopping powers

#### photon stopping power ratios

TG-51 uses stopping powers from ICRU Report 37

This is biggest difference from TG21.

Due to underlying stopping powers





-TG-51 values from Rogers and Yang Med Phys 26 (1999) 536

#### stopping power ratios: state of the ar

Uncertainties are related to uncertainties in underlying stopping powers

-I-values: most recent water I-value measurement is 6% different from that used  $\Rightarrow 0.1$  to 0.4% change in  $k_Q$ .

Calculations with full photon beam phase-space (with horns and varying energy cross beam) rather than calc with realistic spectra but uniform point sources show no significant changes.

Similarly, the sprs as a function of %dd(10)<sub>x</sub> do not change when flattening filter is removed (they change as a function of TPR)

Canada's Capital University

#### Calculation of TG-51 factors

To calculate  $k_Q$ ,  $k_{ecal}$ , etc we need:

- -sprs, Pwall, Pcel, Pfl, Pgr
- plus a method to convert  $\text{TPR}_{20,10}$  to  $\text{\%dd}(10)_{\text{x}}$  since much of original data is in terms of  $\text{TPR}_{20,10}$

Ch 9 gives details for each of these.



#### TPR<sub>20,10</sub> <--> %dd(10)<sub>x</sub>

#### This applies to heavily filtered beams only.

$$TPR_{10}^{20} = -0.8228 + 0.0342 \left(\% dd(10)_X\right) - 0.0001776 \left(\% dd(10)_X\right)^2$$

$$\%dd(10)_x = -430.62 + 2181.9 \left(TPR_{10}^{20}
ight) - 3318.3 \left(TPR_{10}^{20}
ight)^2 + 1746.5 \left(TPR_{10}^{20}
ight)^3$$





### P<sub>cel</sub>: Al electrode correction

- -for electrode same as wall material, any effect is in Pfl
- -Ma & Nahum showed aluminum electrodes have an effect
  - -larger in photon beams
- -but biggest effect in TG-51 is in electron beams because it cancels in photons
- -was not included in TG-21



### P<sub>cel</sub>: Al electrode correction

#### -expts confirm calns

-more accurate recent calculations are in good agreement

-effect much smaller in ebeams (<0.2%)



expt: Palm & Mattsson PMB 44 (1999) 1299 caln: Buckley et al MP 31 (2004) 3425 Wulff et al, PMB 53 (2008) 2823 orig caln: Ma & Nahum PMB 38 (1993) 267



## Pwall

- accounts for wall not being water
  - unity for electrons
  - same as TG-21 for photons (Almond-Svensson eqn)

$$P_{\text{wall}} = \frac{\alpha \left(\frac{\overline{L}}{\rho}\right)_{\text{air}}^{\text{wall}} \left(\frac{\overline{\mu_{\text{en}}}}{\rho}\right)_{\text{wall}}^{\text{med}} + \tau \left(\frac{\overline{L}}{\rho}\right)_{\text{air}}^{\text{sheath}} \left(\frac{\overline{\mu_{\text{en}}}}{\rho}\right)_{\text{sheath}}^{\text{med}} + \left(1 - \alpha - \tau\right) \left(\frac{\overline{L}}{\rho}\right)_{\text{air}}^{\text{med}}}{\left(\frac{\overline{L}}{\rho}\right)_{\text{air}}^{\text{med}}}$$

For walls 0.05g/cm<sup>2</sup>

Changes vs TG-21 due to better cross sections





#### Recent Monte Carlo values of Pwall



## wall for parallel-plate chambers in 60Co

EGSnrc results supersede EGS4 results used in TG-51

k<sub>ecal</sub> values will decrease since

$$k_{ ext{ecal}}^{pp} = rac{0.9038}{P_{ ext{wall}}^{^{60}Co}}$$

(note Ch9 misleading)





### P<sub>fl</sub> for cylindrical chambers

P<sub>fl</sub> = 1.000 in photon beams at 10 cm depth because of transient charged particle equilibrium

For cylindrical chambers in e- beams, TG-51 uses values as a function of  $E_z$  and  $r_{cav}$ . These are from TG-21 based on measurements by Johansson et al (1977) at  $d_{max}$ .

More recent but less extensive measurements by Wittkamper and others confirmed the original measurements.





## P<sub>fl</sub> for cylindrical chambers

Tabulated vs  $E_z$  at  $d_{max}$ , but we need values at  $d_{ref}$ . Calculate  $E_z$  at  $d_{ref}$  and use tabulated values for  $d_{max}$ .

How do we get E<sub>z</sub> at d<sub>ref</sub> given R<sub>50</sub>?

Harder relationship: 
$$\overline{E}_z=\overline{E}_0\left(1-z/R_p
ight)$$

Figure shows linear relationship between R<sub>50</sub> & Rp for many calculated depth-dose curves

$$\overline{E}_z = 2.33 R_{50} \left( 1 - rac{z}{1.2709 R_{50} - 0.23} 
ight)$$





# P<sub>fl</sub> for plane-parallel chambers

Based on values in TG-39: Unity for "well-guarded" chambers and less than 1.0 for others

Markus & Capintec values based on many measurements with large uncertainties.





## P<sub>gr</sub> for cylindrical chambers

As discussed previously, e- beams use a simple measurement to obtain  $P_{gr}$ .

Photon beams

TG-51 & TG-21 use values of Cunningham & Sontag(1980) -values buried in  $k_Q$  values

IAEA uses values from Johansson et al (1977) which also led to the 0.75  $r_{cav}$  and 0.6  $r_{cav}$  offsets used for the effective point of measurement approach

Offset values can lead to equivalent correction factors

$$P_{gr}^{ ext{offset}} = 1 + \left(rac{1}{10}\lnrac{D_{20}}{D_{10}}
ight)\Delta z$$



$$rac{D_{20}}{D_{10}} = 0.05607 + 0.77639 \; TPR_{10}^{20}$$

## P<sub>gr</sub> for cylindrical chambers

P<sub>gr</sub> is largest difference between TG-51 and TRS-398

Wang's MC
calns disagree
with both: and
can explain
previous
measurements







## ion recombination: Pion

Corrects reading to 100% collection efficiency.

For pulsed beams a then "new" linearized form of the TG-21 eqn is used.

$$P_{ ext{ion}}\left(V_{H}
ight) = rac{1.-rac{V_{H}}{V_{L}}}{rac{M_{ ext{raw}}^{H}}{M_{ ext{raw}}^{L}}-rac{V_{H}}{V_{L}}}$$





Must be measured at dose-rate to be used at

## experimental verification of

Expts agree with TG-51 values within experimental uncertainties.

Seuntjens et al (Med Phys 27 (2000) 2763)





### experimental verification of

<u>k</u>Q

Seuntjens et al at NRC measured  $k_Q$  for >= 3 of each of 6 chamber types Measured against primary standards

Measurement accuracy ±0.5%

k<sub>Q</sub> consistent for each type

RMS deviation TG-51 vs expt for 60 data points is 0.4%

Based on this agreement with measurements
-a reasonable uncertainty on
TG-51 photon beam k<sub>Q</sub> values is 0.5%



#### What is uncertainty on dose?

$$D_{\mathrm{w}}^Q = M k_Q N_{\mathrm{D,w}}^{^{60}Co}$$

- Uncertainties (photons)
  - on  $N_{Dw}$  is 0.5-0.6%
  - on  $k_{Q}$  is 0.5%
  - on M (%dd(10) $_{x}$ , monitor etc) 0.7%
- total uncertainty 1.0%



## kq: state-of-the-art

The photon beam P<sub>wall</sub> and P<sub>repl</sub> values in TG-51 have been shown to be wrong.

What is overall effect on  $k_Q$ ?





Bryan Muir, AAPM 09: preliminary results

#### Conclusion

Despite various improvements in our understanding of the details of corrections used in TG-51, the overall accuracy is still thought to be of the order of 1% or better, at least for photon beams.

We still need some more experimental confirmations in electron beams.

#### Acknowledgements

Thanks to all my colleagues on TG-51 Peter Almond, Peter Biggs, Bert Coursey, Will Hanson, Saiful Hug and Ravi Nath



#### Resources/References

- TG-51 protocol MP 26 (1999) 1847 -- 1870
- Kosunen et al, Beam Quality Specification for Photon Beam Dosimetry MP 20 (1993) 1181
- Li et al, Reducing Electron Contamination for Photon-Beam-Quality Specification, MP 21 (1994) 791
- Burns et al,  $R_{50}$  as a beam quality specifier for selecting stopping-power ratios and reference depths for electron dosimetry MP 23 (1996) 383
- Rogers, A new approach to electron beam reference dosimetry, MP 25 (1998) 310

#### Resources/References

- Rogers, Fundamentals of Dosimetry Based on Absorbed-Dose Standards in 1996 AAPM Summer School book (http://www.physics.carleton.ca/~drogers/pubs/papers)
- http://rpc.mdanderson.org/RPC and click on TG-51 on left
- Rogers, Fundamentals of high energy x-ray and electron dosimetry protocols in 1990 AAPM Summer School book (http://www.physics.carleton.ca/~drogers/pubs/papers)

