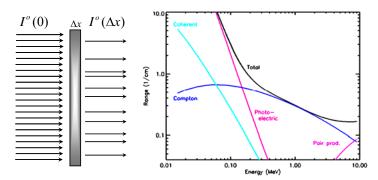
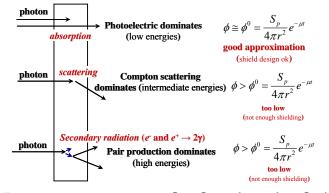

Term	Definitions
	Ionization is a process whereby one or more electrons are liberated from an atom;
Ionization	Atomic number and mass number stays the same; Atom becomes positively charged
	(because e- is removed). Orbital electron is removed from atom Electron-ion pair is created (~ 10 to 100 eV required)
n 10.21	Orbital electron "jump" from a lower to higher orbit.; As electrons jump back to ground
Excitation	state, energy is translated to heat (e.g., vibrational, rotational motion) or photons
Directly Ionizing	Directly ionizing (charged particles): interactions produce ionization and excitation of
	the medium (charged particles)alpha particles, beta particles, fission fragments
Indirectly	Indirectly ionizing (photons and neutrons): interactions produce secondary charged
Ionizing	particles that ionize matter x-rays, gamma-rays, neutrons Interactions of neutral particles with matter are dominated by short-range forces; Neutra
	particles travel relatively large distances in straight lines and then interact (scatter or
	absorption); Absorption or scattering of the primary neutral particle may produce
	secondary charged particles (e^+ , e^- , p , α); Interactions of the neutral particle and the
D (1	second radiations are stochastic (probabilistic)we can predict the average behavior of
Particle Interactions	the radiation but we cannot predict the where and when a specific particle will interact; <i>Total relativistic momentum and energy is conserved in all particle interactions</i> !!!
Interactions	Atoms are ionized or excited when radiation passes through matterNet result is that
	energy is transferred from the ionizing particle to the medium; Interactions occur at
	discrete sites along the trajectory of the particle. Spatial pattern of energy deposits
	produced along the trajectory of a particle is often called a <i>track;</i> Number and types of
	interactions are governed by random (stochastic) processes Scattering may be elastic (kinetic energy conserved) or inelastic (kinetic energy not
Scattering	<i>conserved</i>), and may produce secondary (directly ionizing) radiation
Elastic vs.	Elastic: KE is conserved (i.e. photon to electron) Inelastic: KE is converted into some
Inelastic	other form (i.e. photon absorbed by nucleus and raises it to an excited state.
Scattering	Approximately=elastic exactly=inelastic Elastic must leave nucleus in ground state.
Elastic Collisions	Elastic collisions with atomic nuclei changes the direction of the electron. No
	significant energy loss by electronKinetic energy and momentum are conserved.
	Inelastic collisions responsible for ionization and excitation Momentum is conserved, kinetic energy is not.
	Inelastic Collision
	Incrastic Collision
Inelastic	$e^- E_k = E_{\text{lost}} I$
Collisions	e Carlost I
	$E_{\rm in}$ - $E_{\rm out}$ = $E_{\rm lost}$
	I is the ionization potential (~ few tens of eV).
Maximum	Maximum energy that can be lost by an electron in an inelastic collision is ¹ / ₂ the kinetic
Energy Loss	energy of the incident (colliding) electron.
Bremstrahlung Radiation	When a charged particle is accelerated (changes direction), electromagnetic radiation is
	emitted. Every charged particle has a virtual "cloud" of photons surrounding it. When a
	charged particle changes direction, some of the photons continue on in the original
	direction Positrons are the anti-matter equivalent of electrons (Same mass/Opposite charge);
	Energetic positron interactions are nearly the same as for electrons exceptAs the
Positron	kinetic energy of the positron approaches zero, the positron will combine with an
Annihilation	electron: All of the energy of the positron and electron is converted into electromagnetic
	radiation (i.e., photons); Two 0.511 MeV photons are created for each positron-electron
	annihilation event (0.511 MeV = rest mass energy of electron and positron) Range is the average distance a charged particle (e_{-}, e_{+}, p, a) can travel through some
	<i>Range</i> is the average distance a charged particle (<i>e</i> -, <i>e</i> +, <i>p</i> , a) can travel through some medium; For electrons and protons, range can be approximated an empirical formula:
Charged Particle	
	$D = 1 \Omega a + px + cx$
Range	K = -10
·	$\frac{K = -10}{\rho}$
Stopping Power	$R = \frac{1}{\rho} 10^{a+bx+cx^2}$ Average rate of energy loss (excitation and ionization) per unit path length (distance) traveled
·	traveled.
Stopping Power (specific ioniz.)	R = -10 ρ Average rate of energy loss (excitation and ionization) per unit path length (distance) traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and
Stopping Power	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary
Stopping Power (specific ioniz.)	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect
Stopping Power (specific ioniz.)	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals
Stopping Power (specific ioniz.)	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction
Stopping Power (specific ioniz.)	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction
Stopping Power (specific ioniz.) Absorption	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray.
Stopping Power (specific ioniz.) Absorption	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited
Stopping Power (specific ioniz.) Absorption	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray.
Stopping Power (specific ioniz.) Absorption	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray.
Stopping Power (specific ioniz.) Absorption	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. $E = e^{E} = e^{E} = e^{E}$
Stopping Power (specific ioniz.) Absorption	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. $E = e^{E} = e^{E} = e^{E}$
Stopping Power (specific ioniz.) Absorption	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. E = E = E = E = E = E = E = E = E = E =
Stopping Power (specific ioniz.) Absorption Neutron Collisions	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray.
Stopping Power (specific ioniz.) Absorption Neutron Collisions	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. $E = e^{E} = e^{E} = e^{E}$
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. $E = e^{E} = e^{E} = e^{E}$
Stopping Power (specific ioniz.) Absorption Neutron Collisions	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. $E = e^{E} = e^{E} = e^{E}$
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. $E = e^{E} = e^{E} = e^{E}$
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (e')	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. $E = e^{E} = e^{E} = e^{E}$
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (¢) Positively	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (e')	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (¢) Positively	Traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel Positively charged particles (e^+ , p, α) lose energy because like charges attract each other
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (¢) Positively	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel Positively charged particles (e^* , p, α) lose energy because like charges attract each other Used to quantify the interaction of photons particles with matter; Concept applies to both
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (¢) Positively	Traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel Positively charged particles (e^+ , p, α) lose energy because like charges attract each other
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (¢) Positively	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel Positively charged particles (e^+ , p, α) lose energy because like charges attract each other Used to quantify the interaction of photons particles with matter; Concept applies to both neutrons and photons; However for neutrons, the term <i>macroscopic cross section</i> (2) is
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (e') Positively charged particles	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. Fride the energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel Positively charged particles (e^+ , p, α) lose energy because like charges attract each other Used to quantify the interaction of photons particles with matter; Concept applies to both neutrons and photons; However for neutrons, the term <i>macroscopic cross section</i> (2) is often used instead of the term <i>linear interaction coefficient</i> (μ); Subscripts are used to soften used instead of the term <i>linear interaction coefficient</i> (μ); Subscripts are used to
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (¢) Positively	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. F' < E Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel Positively charged particles (e^+ , p, α) lose energy because like charges attract each other Used to quantify the interaction of photons particles with matter; Concept applies to both neutrons and photons; However for neutrons, the term macroscopic cross section (2) is often used instead of the term <i>linear interaction coefficient</i> (μ), Subscripts are used to denote the type of interaction coefficient; May sub-divided μ_a and μ_a , into specific types of interactions (e.g., Compton scattering)
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (c) Positively charged particles	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. F' < E Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel Positively charged particles (e^+ , p, α) lose energy because like charges attract each other Used to quantify the interaction of photons particles with matter; Concept applies to both neutrons and photons; However for neutrons, the term macroscopic cross section (2) is often used instead of the term <i>linear interaction coefficient</i> (μ), Subscripts are used to denote the type of interaction coefficient; May sub-divided μ_a and μ_a , into specific types of interactions (e.g., Compton scattering)
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (c) Positively charged particles	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. F' < E Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel Positively charged particles (e^+ , p, α) lose energy because like charges attract each other Used to quantify the interaction of photons particles with matter; Concept applies to both neutrons and photons; However for neutrons, the term macroscopic cross section (2) is often used instead of the term <i>linear interaction coefficient</i> (μ), Subscripts are used to denote the type of interaction coefficient; May sub-divided μ_a and μ_a , into specific types of interactions (e.g., Compton scattering)
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (c) Positively charged particles	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. F' < E Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel Positively charged particles (e^+ , p, α) lose energy because like charges attract each other Used to quantify the interaction of photons particles with matter; Concept applies to both neutrons and photons; However for neutrons, the term macroscopic cross section (2) is often used instead of the term <i>linear interaction coefficient</i> (μ), Subscripts are used to denote the type of interaction coefficient; May sub-divided μ_a and μ_a , into specific types of interactions (e.g., Compton scattering)
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (c) Positively charged particles	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. F' < E Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel Positively charged particles (e^+ , p, α) lose energy because like charges attract each other Used to quantify the interaction of photons particles with matter; Concept applies to both neutrons and photons; However for neutrons, the term macroscopic cross section (2) is often used instead of the term <i>linear interaction coefficient</i> (μ), Subscripts are used to denote the type of interaction coefficient; May sub-divided μ_a and μ_a , into specific types of interactions (e.g., Compton scattering)
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (c) Positively charged particles	traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. F' < E Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel Positively charged particles (e^+ , p, α) lose energy because like charges attract each other Used to quantify the interaction of photons particles with matter; Concept applies to both neutrons and photons; However for neutrons, the term macroscopic cross section (2) is often used instead of the term <i>linear interaction coefficient</i> (μ), Subscripts are used to denote the type of interaction coefficient; May sub-divided μ_a and μ_a , into specific types of interactions (e.g., Compton scattering)
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (c) Positively charged particles	Traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom); Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energy of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel Positively charged particles (e^+ , p, α) lose energy because like charges attract each other Used to quantify the interaction of photons particles with matter; Concept applies to both neutrons and photons; However for neutrons, the term macroscopic cross section (Σ) is often used instead of the term linear interaction coefficient (μ); Subscripts are used to denote the type of interaction coefficient; May sub-divided μ_a and μ_a into specific types of interactions (e.g., Compton scattering, coherent scattering) Example: Water $\mu = \frac{\sigma_n N_n + \sigma_0 N_0}{(1.69 \times 10^{-31} cm^{-2} \cdot 6.7 \times 10^{-2} H cm^{-3}) + (1.69 \times 10^{-31} cm^{-2} \cdot 6.7 \times 10^{-2} H cm^{-3}) + (1.69 \times 10^{-31} cm^{-2} \cdot 6.7 \times 10^{-2} H cm^{-3}) + (1.69 \times 10^{-31} cm^{-2} \cdot 6.7 \times 10^{-2} H cm^{-3}) + (1.69 \times 10^{-31} cm^{-2} \cdot 6.7 \times 10^{-2} H cm^{-3}) + (1.69 \times 10^{-31} cm^{-2} \cdot 6.7 \times 10^{-2} H cm^{-3}) + 0.0706 cm^{-1}$
Stopping Power (specific ioniz.) Absorption Neutron Collisions Negatively charged particles (c) Positively charged particles	Traveled. Absorption: Primary particle is absorbed ("captured") by the atom; Some of the energy may appears as nuclear excitation and some as heat (translational, vibrational and rotational energy of the atom;) Ultimate result may be the emission of secondary (particulate) radiation, such as in the photoelectric effect Neutron interactions are: 1) Elastic if the kinetic energies of the incident neutron equals the sum of the kinetic energies of the neutron and recoil nucleus after the interaction (nucleus is left in ground state); 2) Inelastic if nucleus is left in an excited state. Excited nucleus returns to the ground state through the emission of a gamma-ray. Electrons lose energy as they approach the orbital electrons. $F = k \frac{q_1 q_2}{r^2}$ Like charges repel Positively charged particles (e^+ , p, α) lose energy because like charges attract each other used instead of the term <i>linear interaction coefficient</i> (μ). Subscripts are used to denote the type of interaction of micenergy because like charges are used to denote the type of interaction coefficient; May sub-divided μ_a and μ_i into specific types of interaction coefficient; May sub-divided μ_a and μ_i into specific types of interaction coefficient (μ). Subscripts are used to denote the type of interaction coefficient; May sub-divided μ_a and μ_i into specific types of interactions (e.g., Compton scattering) Example: Water $\mu_i(E) = \sum_i \mu_i(E) = \mu_a(E) + \mu_k(E)$ total Example: Water

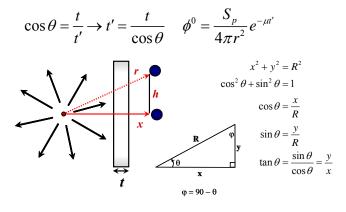

* Chance radiation will "hit" a target (e.g., an atom or cell) *increases* as the size of the target *increases*

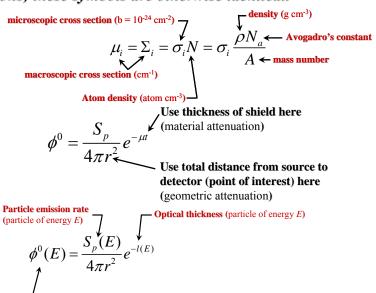
* Chance radiation will hit a target tends to *decrease* as the distance between the source and target *increases*


Use symbol Σ for neutrons and μ for photons; these symbols are otherwise identical.

					ц			Ĩ	SI prefixes		
			ose		we				Factor	Name	Symbol
			D T	0	\mathbf{P}_{0}				10 ²⁴	yotta	Y
	E E	ŝ	peq	Jung	ing	set	B		10 ²¹	zetta	Z
	Photon	Charge	Absorbed Dose	Exposure	Stopping Power	Indirect	Kerma	ĺ	10 ¹⁸	exa	Е
I.R. Type	Pl	C			St	In			10 ¹⁵	peta	Р
x-ray	✓		✓	√		✓	\checkmark	ſ	10 ¹²	tera	Т
gamma	✓		✓	\checkmark		✓	\checkmark	ľ	10 ⁹	giga	G
neutron		0	✓			✓	✓	ľ	10 6	mega	M
electron		-1	✓		✓			ľ	10 ³	kilo	k
positron		+1	✓		✓				10 ²	hecto	h
proton		+1	✓		✓						
alpha		+2	✓		✓				101	deka	da
Radiation V	Veight	Factor	s						0		
Radiation Type				Energy Range			WR		10-1	deci	d
Photons				all			1		10-2	centi	с
Electrons & muons				all			1	11	10 ⁻³	milli	т
Neutrons				< 10 keV			5		10-6	micro	μ
				10 keV - 100 keV			10		10-9	nano	п
				100 keV - 2 MeV			20		10-12	pico	р
				2 MeV - 20 MeV			10	11	10-15	femto	f
				>20 MeV			5		10-18		
Protons, other than recoil				>2 MeV			5			atto	a
Alpha particles, fission									10-21	zepto	Z
fragments, heavy nuclei				all			20	l	10 ⁻²⁴	yocto	у

1990 ICRP and 1993 NCRP




Particle Interactions and Radiation Shielding

Detector response at other locations (angles)

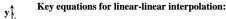
Radiation will have to penetrate through a larger amount of shielding to reach the detector.

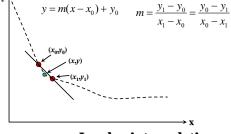
L Uncollided fluence rate for particles with energy E

Photon interaction coefficients

$$\mu/\rho = \sigma \frac{N_a}{A} \xrightarrow[]{\text{Multiply } \mu/\rho \text{ by } \rho} \mu = \sigma \cdot \left(\rho \frac{N_a}{A}\right)$$

Units: $\frac{\text{cm}^2}{\text{g}}$ Units: cm^{-1}

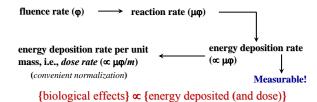

Neutron interaction coefficients


— microscopic cross section (b =10⁻²⁴ cm²)

$$= \sigma \cdot \left(\rho \frac{N_a}{A} \right) \quad \text{Units: } \text{cm}^{-1}$$

Interpolation (linear-linear)

Σ


Log-log interpolation

$$u = \frac{\ln y_1 - \ln y_0}{\ln x_1 - \ln x_0} = \frac{\ln(y_1 / y_0)}{\ln(x_1 / x_0)} \quad y = \exp\{m(\ln x - \ln x_0) + \ln y_0\}$$

Radiation dosimetry (motivation)

 Even if we could measured or calculate fluence or fluence rate, we would be overwhelmed by information in any practical situation

We need quantities that condense information about particle fluence and fluence rate into other biologically meaningful quantities, *preferably ones that can be measured*.

{damage to inanimate systems} \propto {energy deposited (and dose)}