Lecture #2: Units and Physical Quantities

A **physical quantity** characterizes event or process in terms suitable for numerical specification and manipulation. Length, time, volume, absorbed dose are all physical quantities.

to convert Common ٠ • • • • • ٠ •

- Isotope (nuclide. Ca

Rest Mass & Energies

 $m_{\rho} = 0.51099890 \text{ MeV}$ $m_p = 938.272 \text{ MeV}$ $m_n = 939.56533 \text{ MeV}$ 1 u = 931.494013 MeV

cal Constants — Frequently used constants

hould be expressed as the product of a numerical value and a unit.	SI profives	
Example unit conversion: Suppose we are given a dose rate in mGy/day and want	Factor Name Symbol	Fundamental Physic
$2.3 \frac{\text{mGy}}{1.000 \text{ Gy}} \times \frac{\text{Gy}}{1.000 \text{ Gy}} \times \frac{1 \text{ day}}{244} = 9.583 \times 10^{-5} \frac{\text{Gy}}{1.000 \text{ Gy}}$	10 ²⁴ yotta Y	
day 1,000 mGy 24 n n Common Non SI Units (see http://physics.nist.gov/cuu/Units/)	10 zetta Z 10^{18} exa E	Quantity
• $angström (Å): 1 Å = 0.1 nm = 10^{-10} m$	10 ¹⁵ peta P	mod of light in the men
• unified atomic mass unit (u): $1 u = 1.66054 \times 10^{-27} \text{ kg}$	10 ¹² tera T	magnetic constant
• electron volt (ev): $1 \text{ ev} = 1.60218 \times 10^{-9} \text{ J}$ • barn (b): 10^{-28} m2	10 giga G 10 ⁶ mega M	-
• curie (Ci): 1 Ci = 3.7×10^{10} Bq	10 ³ kilo k	electric constant $1/\mu_0 c^2$ Newtonian constant
• roentgen (R): $1 R = 2.58 \times 10^{-4} C/kg$	10 ² hecto h	of gravitation
• rem (rem): 1 rem = 1 $cSv = 10^{-2} Sv$	10 deka da 0	
Superposition principle says that doses and dose rates that arise from different	10 ⁻¹ deci d	Planck constant h/2m
adiation sources can be added together. total dose rate $(dr) = \sum_{i} {dr}_{i} = {dr}_{1} + {dr}_{2} + \cdots$ Cell mass (m) volume (V) density (o) equations	10 ⁻ centi c 10 ⁻³ milli m	elementary charge
Cell Mass. Soft tissue in human body has - same density as	10 ⁻⁶ micro μ	magnetic flux quantum $h/2e$
water (1 g cm ⁻³). Since the human body is composed of cells,	10 ⁻⁹ nano n	conductance quantum 2e / n
let's assume cells also have about the same density as water.	10 ⁻¹⁵ femto f	electron mass
$\stackrel{10\mu\text{m}}{\longleftrightarrow} m = V\rho = (10^{-9}\text{cm}^3/\text{cell}) \times (1\text{g/cm}^3) = 10^{-9}\text{g/cell}$	10 ⁻¹⁸ atto a	proton-electron mass ratio
$\begin{bmatrix} 10^{-9} \text{ g/cell} \times (10^{9} \text{ ng}) = 1 \text{ ng/cell} \end{bmatrix}$	10 ⁻²⁴ zepto z	fine-structure constant $e^2/4\pi\epsilon_0\hbar c$
↓ ↓ · · · · · · · · · · · · · · · · · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	inverse fine-structure constant
How many calls in the human hody? 🛛 💥 👋		Rydberg constant $\alpha^2 m_{ m e} c/2h$
now many cens in the numan body.		Avogadro constant Faraday constant N. e
No cells = $\left(\frac{\text{mass of human}}{1000}\right) = \left(\frac{175 \text{ lb}}{1000}\right) = 7.95 \times 10^{13} \text{ cells}$		molar gas constant
mass of cell $\int (2.2 \times 10^{-12} \text{ lb})^{-1}$		Boltzmann constant R/NA
Expect about 10 ¹¹ to 10 ¹³ cells in human body		Steran-Boltzmann constant $(\pi^2/60)k^4/\hbar^3c^2$
How long for radiation to pass through a cell?		No.
		-1
An electron traveling at the speed of light passes through 10 µm		(unified) atomic mass unit
Distance $(m) = time (s) \times speed (m/s)$		$l u = m_u = \frac{1}{12}m(^{12}C)$
$10 \ \mu m \times \left(\frac{m}{10^6 \ \mu m}\right) time = distance/speed$		$= 10^{-3} \text{ kg mol}^{-1}/N_{\text{A}}$
time = $\frac{(10^{\circ} \text{ µm})}{3 \times 10^8 \text{ m}}$ = 3.3333 × 10 ⁻¹⁴ s		$Energy = E = hy = \frac{hc}{c}$
5×10 _ 5		λ
= $3.3333 \times 10^{-14} \text{ s} \times \left(\frac{10^{12} \text{ ps}}{2}\right) = 0.033333 \text{ ps} \text{ (pico seconds)}$		$Activity = A = 5.7 \times 10^{-1} \text{ B}$ $Proton = p = {}^{-1}H = 1.67$
		$Neutron = n = {}^{1}n = 1.6749$
Lectures #3 and #4: The Atom	~	$Electron = e^{-} = {}^{0}e = 9100$
Neutron (m	eutral)	1 amu = 4 = 1.66053873
1st known fission reactor "built" about 1.7 billion years ago in Africa. Each electron and proton has a charge equal to 1 60217653 × 10-19 C		
······································		$AiDna = \alpha = AiPi (\alpha de)$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus		$Alpha = \alpha = {}_{2}He (\alpha \text{ det}$ $Beta = \beta^{-} = {}_{0}e \text{ (emiss)}$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic number $N =$ neutron number $A = (N + Z) =$ mass number N/Z Ratios : As Z increases. N/Z increases (more neutrons needed to bind nucleus)	$ \longrightarrow $	$Alpha = \alpha = {}_{2}He (\alpha \text{ def}$ $Beta = \beta^{-} = {}_{-1}^{0}e \text{ (emiss}$ $Positron = \beta^{+} = {}_{0}^{0}e \text{ (emiss}$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus $Z = $ atomic number $N =$ neutron number $A = (N + Z) =$ mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z		$Alpha = \alpha = {}_{2}He \ (\alpha \ define \ $
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = $(N + Z)$ = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e- is removed) Ionizine Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic	(-)	$Atpha = \alpha = {}_{2}tre (\alpha \text{ det})$ $Beta = \beta^{-} = {}_{-1}^{0}e \text{ (emiss)}$ $Positron = \beta^{+} = {}_{+1}^{0}e \text{ (emiss)}$ $Electron \ Capture = \text{Emission from}$ $Gamma \ Ray \ Emission = \gamma = photons (m)$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = $(N + Z)$ = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e- is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic nergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺)		$Alpha = \alpha = {}_{2}rle (\alpha \text{ det})$ $Beta = \beta^{-} = {}_{-1}^{0}e \text{ (emiss)}$ $Positron = \beta^{+} = {}_{+1}^{0}e \text{ (emiss)}$ $Electron Capture = Emission from$ $Gamma Ray Emission = \gamma = photons (m)$ $Photoelectric Effect = Vacancy in low$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e - is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic mergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) articles; (2) Very energetic photons (electromagnetic radiation); x-rays and y-rays Elements: All atoms of <i>same element</i> have <i>same</i> Z, <i>but mov hove different</i> A	() Ionization	$Aipha = \alpha = {}_{2}rie (\alpha \text{ det})$ $Beta = \beta^{-} = {}_{-1}^{0}e \text{ (emiss)}$ $Positron = \beta^{+} = {}_{-1}^{0}e \text{ (emiss)}$ $Electron Capture = Emission from$ $Gamma Ray Emission = \gamma = photons (m)$ $Photoelectric Effect = Vacancy in low > Photon interacc$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e- is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic mergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) varticles; (2) Very energetic photons (electromagnetic radiation); x-rays and y-rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a		$A t pha = \alpha = {}_{2} t t e (\alpha \text{ det})$ $Beta = \beta^{-} = {}_{-1}^{0} e \text{ (emiss)}$ $Positron = \beta^{+} = {}_{-1}^{0} e \text{ (emiss)}$ $Electron Capture = Emission from$ $Gamma Ray Emission = \gamma = photons (m)$ $Photoelectric Effect = Vacancy in low > Photon interact$ $Compton Effect = Vacancy in low$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus $Z = \operatorname{atomic} \operatorname{number}$ $N = \operatorname{neutron} \operatorname{number}$ $A = (N + Z) = \operatorname{mass} \operatorname{number}$ Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e- is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic mergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) varticles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be stable (Z and N do not change) or unstable (Z or N pontaneously change).	e) Ionization	$A_{i}p_{i}a = \alpha = _{2}rie (\alpha \text{ det})$ $Beta = \beta^{-} = _{-}^{0}e \text{ (emiss)}$ $Positron = \beta^{+} = _{+}^{0}e \text{ (emiss)}$ $Electron Capture = \text{Emission from}$ $Gamma Ray Emission = \gamma = photons (m)$ $Photoelectric Effect = \text{Vacancy in low}$ $\triangleright \text{ Photon interact}$ $Compton Effect = \text{Vacancy in low}$ $\triangleright \text{ Incident photon}$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus $Z = \operatorname{atomic} \operatorname{number}$ $N = \operatorname{neutron} \operatorname{number}$ $A = (N + Z) = \operatorname{mass} \operatorname{number}$ Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e- is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic mergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) varticles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>tuclide</i> . Can either be stable (Z and N do not change) or unstable (Z or N pontaneously change). Unstable nuclides are radioactive.	e) Ionization	$A_{i}p_{i}a = \alpha = _{2}r_{i}e \ (\alpha \ det)$ $Beta = \beta^{-} = _{-}^{0}e \ (emiss)$ $Positron = \beta^{+} = _{+}^{0}e \ (emiss)$ $Electron \ Capture = Emission \ from$ $Gamma \ Ray \ Emission = \gamma = photons \ (mi)$ $Photoelectric \ Effect = Vacancy in low > Photon interact$ $Compton \ Effect = Vacancy in low > Incident photoe Pair Production = Incident photoe $
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus $Z = \operatorname{atomic} number$. $N = \operatorname{neutron} number$. $A = (N + Z) = \operatorname{mass} number$ Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e- is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic energy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) varticles; (2) Very energetic photons (electromagnetic radiation), x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>tuclide</i> . Can either be stable (Z and N do not change) or unstable (Z or N pontaneously change). Unstable nuclides are radioactive. Isobar: same mass # (A = N + Z) but different # of neutrons and protons; Examples: 4B, 14C, 14N and 14O	e) Ionization	$A tpha = \alpha = _{2} tre (\alpha \text{ det})$ $Beta = \beta^{-} = _{-1}^{0} e \text{ (emiss)}$ $Positron = \beta^{+} = _{-1}^{0} e \text{ (emiss)}$ $Electron Capture = \text{Emission from}$ $Gamma Ray Emission = \gamma = photons \text{ (m}$ $Photoelectric Effect = \text{Vacancy in low}$ $\triangleright \text{ Photon interac}$ $Compton Effect = \text{Vacancy in low}$ $\triangleright \text{ Incident photon}$ $Pair Production = \text{Incident photon}$ $\triangleright E_{\gamma} \ge 1.022 \text{ Me}$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus $Z = \operatorname{atomic} numberN = \operatorname{neutron} numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e - is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic energy to ionize matter. Electrons, positrons, neutrons, protons, alpha (4He2+) varticles; (2) Very energetic photons (electromagnetic radiation); x-rays and \gamma-rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a uuclide. Can either be stable (Z and N do not change) or unstable (Z or N pontaneously charge). Unstable nuclides are radioactive. Isobar: same mass # (A = N + Z) but different # of neutrons and protons; Examples: 13B, 4C, 15N and 16O$	e) Ionization	$A_{i}p_{i}a = \alpha = _{2}r_{i}e \ (\alpha \ det)$ $Beta = \beta^{-} = _{-1}^{0}e \ (emiss)$ $Positron = \beta^{+} = _{-1}^{0}e \ (emiss)$ $Electron \ Capture = Emission \ from$ $Gamma \ Ray \ Emission = \gamma = photons \ (n)$ $Photoelectric \ Effect = Vacancy in low > Photon interact Compton \ Effect = Vacancy in low > Photon interact Compton \ Effect = Vacancy in low > Incident photon Pair Production = Incident photon > E_{\gamma} \ge 1.022 \ MeV Couloum \ Barrier = E_{CB} = 1.44 \ \frac{Z_{P}Z}{D_{P}}$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus $Z = \operatorname{atomic} number$ $N = \operatorname{neutron} number$ $A = (N + Z) = \operatorname{mass} number$ Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e - is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic energy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) varticles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>tuclide</i> . Can either be stable (2 and N do not change) or unstable (Z or N pontaneously change). Unstable nuclides are radioactive. Isobar: same mass # ($A = N + Z$) but different number of protons; Examples: 13B, 4C, 14N and 14O Isotome: (same N and Z): Nuclides can sometimes exist in different long-lived xecited state. Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xecited state. Somers (same N and Z): Nuclides can sometimes exist in different long-lived xecited state.	e) Ionization	$A_{ipha} = \alpha = _{2}rie (\alpha \text{ det})$ $Beta = \beta^{-} = _{-1}^{0}e \text{ (emiss)}$ $Positron = \beta^{+} = _{-1}^{0}e \text{ (emiss)}$ $Electron Capture = \text{Emission from}$ $Gamma Ray Emission = \gamma = photons (m)$ $Photoelectric Effect = \text{Vacancy in low}$ $\triangleright \text{Photon interac}$ $Compton Effect = \text{Vacancy in low}$ $\triangleright \text{ Incident photon}$ $Pair Production = \text{Incident photon}$ $\triangleright E_{\gamma} \ge 1.022 \text{ MeV}$ $Couloum Barrier = E_{CB} = 1.44 \frac{Z_{p}Z}{R_{p} + 1}$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus $Z = \operatorname{atomic} number$. $N = \operatorname{neutron} number$. $A = (N + Z) = \operatorname{mass} number$ Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e - is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic energy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) varticles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be stable (Z and N do not change) or unstable (Z or N pontaneously change). Unstable nuclides are radioactive. Isotoar: same neutron number (N) but different number of protons; Examples: 13B, 4C, 14N and 14O Isotomer: (same N and Z): Nuclides can sometimes exist in different long-lived xicited state. Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xicited state. Isotome: same (half-lives). They also emit different quentities and types of ionizing at the same (half-lives). They also emit different quentities and types of ionizing the same number (N) at the same number of protons at the same same to the same intermole the number (N) and end for the same (half-lives). They also emit different quentities and types of ionizing the same number (N) and the same number of protons and protons at the same (half-lives). They also emit different quentities and types of ionizing the same number (N) and same number (N) and same number (N) and same number (N) and the same number (N) and	Contraction	$A_{ipha} = \alpha = _{2}rie (\alpha \text{ det})$ $Beta = \beta^{-} = _{-1}^{0}e \text{ (emiss)}$ $Positron = \beta^{+} = _{-1}^{0}e \text{ (emiss)}$ $Electron Capture = \text{Emission from}$ $Gamma Ray Emission = \gamma = photons (m)$ $Photoelectric Effect = Vacancy in low > Photon interact$ $Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon > E_{\gamma} \ge 1.022 \text{ MeV}$ $Couloum Barrier = E_{CB} = 1.44 \frac{Z_{p}Z}{R_{p} + 1}$ Size and density a
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus $Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e- is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic nergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (4He2+) varticles; (2) Very energetic photons (electromagnetic radiation); x-rays and \gamma-rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a uuclide. Can either be stable (Z and N do not change) or unstable (Z or N pontaneously charge). Unstable nuclides are radioactive. Isobar: same mass # (A = N + Z) but different number of protons; Examples: 13B, 4C, 15N and 16O Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xxcited state. Isomers (fame N and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers: Tamsition to other (more stable) nuclear configurations at lifterent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: 99Te is an isomer of 190Te (superscript m stands for neutrastable) is an isomer of 108Ag$	Contraction	$A_{i}p_{i}a = \alpha = _{2}r_{i}e \ (\alpha \ determines \ determ$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus $Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e- is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic energy to ionize matter. Electrons, positrons, neutrons, protons, alpha (4He2+) articles; (2) Very energetic photons (electromagnetic radiation); x-rays and \gamma-rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a nuclide. Can either be stable (Z and N do not change) or unstable (Z or N pontaneously charge). Unstable nuclides are radioactive. Isobar: same mass # (A = N + Z) but different number of protons; Examples: 13B, 4C, 15N and 16O Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers transition to other (more stable) nuclear configurations at lifferent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: 90/90 Te (superscript m stands for neutastable); Silver: 1000 Mg is an isomer of 100 Ag Hydrogen (H): 1$	ionization Ionization $H \rightarrow {}^{3}H \rightarrow T$	Alpha = $\alpha = _{2}$ rre (α der Beta = $\beta^{-} = _{-1}^{0}e$ (emiss Positron = $\beta^{+} = _{-1}^{0}e$ (emiss Electron Capture = Emission from Gamma Ray Emission = γ = photons (m Photoelectric Effect = Vacancy in low > Photon interact Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon > $E_{\gamma} \ge 1.022$ MeV Couloum Barrier = $E_{CB} = 1.44 \frac{Z_{\gamma}Z}{R_{\gamma}} + 1$ Size and density a Atom or molecular density (Eq
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e- is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic nergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) particles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be stable (Z and N do not change) or unstable (Z or N pontaneously charge). Unstable nuclides are radioactive. Isotone: same mass # (A = N + Z) but different # of neutrons and protons; Examples: 4B, 14C, 14N and 14O Isotone: same neutron number (N) but different number of protons; Examples: 13B, 4C, 15N and 16O Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers transition to other (more stable) nuclear configurations at lifferent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: ⁹⁰ m ^T Te is an isomer of ⁹⁹ Te (superscript <i>m</i> stands for netastable); Silver: ¹⁰⁸⁰ m ^A g is an isomer of ¹⁰⁸ Ag Hydrogen (H): ¹ (also called <i>ritime</i> , 7)	(c) Ionization Ionization $H \rightarrow {}^{3}H \rightarrow T$ Mass number (4): 3 Atomic number (2): 1	Alpha = $\alpha = _{2}$ rie (α det Beta = $\beta^{-} = _{-1}^{0}e$ (emiss Positron = $\beta^{+} = _{-1}^{0}e$ (emiss Electron Capture = Emission from Gamma Ray Emission = γ = photons (m Photoelectric Effect = Vacancy in low > Photon interact Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon Pair Production = Incident photon Pair Production = Incident photon $Pair Production = $ E _{CB} =1.44 $\frac{Z_p Z}{R_p + 1}$ Size and density a Atom or molecular density (Eq where N is Avogadro's consta
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e- is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic nergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) particles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be stable (Z and N do not change) or unstable (Z or N pontaneously charge). Unstable nuclides are radioactive. Isotone: same mass # (A = N + Z) but different # of neutrons and protons; Examples: 4B, 14C, 14N and 14O Isotone: same neutron number (N) but different mumber of protons; Examples: 13B, 4C, 15N and 16O Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xecited states. Isomers transition to other (more stable) nuclear configurations at lifferent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: ⁹⁰ Te is an isomer of ⁹⁹ Te (superscript <i>m</i> stands for netastable); Silver: ¹⁰⁸ Mg is an isomer of ¹⁰⁸ Ag Hydrogen (H): ¹ The mass of an atom can be estimated by summing the masses of the electrons, rotons and neutrons forming that atom	(c) Ionization Ionization $H \rightarrow {}^{3}H \rightarrow T$ Mass number (A): 3 Atomic number (A): 2	Alpha = $\alpha = _{2}$ rie (α det Beta = $\beta^{-} = _{-1}^{0}e$ (emiss Positron = $\beta^{+} = _{-1}^{0}e$ (emiss Electron Capture = Emission from Gamma Ray Emission = γ = photons (m Photoelectric Effect = Vacancy in low > Photon interact Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon Pair Production = Incident photon Pair Production = Incident photon $Pair Production = $ E _{CB} =1.44 $\frac{Z_{p}Z}{R_{p}}$ +1 Size and density a Atom or molecular density (Eq where N_{a} is Avogadro's constat molecular mass (g) of the subs
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus $Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e- is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic energy to ionize matter. Electrons, positrons, neutrons, protons, alpha (4He2+) articles; (2) Very energetic photons (electromagnetic radiation); x-rays and \gamma-rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a nuclide. Can either be stable (Z and N do not change) or unstable (Z or N pontaneously charge). Unstable nuclides are radioactive. Isobar: same mass # (A = N + Z) but different # of neutrons and protons; Examples: 13B, 14C, 15N and 16O Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers transition to other (more stable) nuclear configurations at lifterent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: 90/108 Ag is an isomer of 108 Ag Hydrogen (H): \frac{1}{2} (also called ritium, 7) The mass of an atom can be estimated by summing the masses of the electrons, rotons and neutrons forming that atom The atomic weight of an atom is the ratio of the atom's mass to 1/12th the mass of a$	() Ionization Ionization $H \rightarrow {}^{3}H \rightarrow T$ Mass number (A): 3 Atomic number (Z): 1 Neutron number (X): 2	Alpha = $\alpha = _{2}$ rie (α det Beta = $\beta^{-} = _{-1}^{0}e$ (emiss Positron = $\beta^{+} = _{-1}^{0}e$ (emiss Electron Capture = Emission from Gamma Ray Emission = γ = photons (m Photoelectric Effect = Vacancy in low > Photon interact Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon Pair Production
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e- is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic mergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) particles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be stable (Z and N do not change) or unstable (Z or N pontaneously charge). Unstable nuclides are radioactive. Isobar: same mass # (A = N + Z) but different # of neutrons and protons; Examples: 4B, 14C, 14N and 14O Isotome: same neutron number (N) but different mumber of protons; Examples: 13B, 4C, 15N and 16O Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers transition to other (more stable) nuclear configurations at lifferent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: ^{9/m} Te is an isomer of ⁹⁹ Te (superscript <i>m</i> stands for netastable); Silver: ^{108/m} Ag is an isomer of ¹⁰⁸ Ag Hydrogen (H): ^(also called trium, 7) The mass of an atom can be estimated by summing the masses of the electrons, rotons and neutrons forming that atom The <i>atomic mesight</i> of an atom is the ratio of the atom's mass to 1/12th the mass of a ueutral atom of 12C in its ground state; naturally occurring elements are often a that atom is provide the provide state for the stable of the stab	(c) Ionization Ionization $H \rightarrow {}^{3}H \rightarrow T$ Mass number (A): 3 Atomic number (Z): 1 Neutron number (N): 2	$A_{i}p_{i}a = \alpha = _{2}r_{i}e \ (a \ det)$ $Beta = \beta^{-} = _{-1}^{0}e \ (emiss)$ $Positron = \beta^{+} = _{-1}^{0}e \ (emiss)$ $Electron \ Capture = Emission \ from$ $Gamma \ Ray \ Emission = \gamma = photons \ (m)$ $Photoelectric \ Effect = Vacancy in low > Photon interacc Compton \ Effect = Vacancy in low > Incident photon Pair Production = Incident photon Pair Production = Incident photon Pair Couloum Barrier = ECB = 1.44 \frac{Z_{p}Z}{R_{p}+1} Size \ and \ density \ (Eq where N_{a} is Avogadro's constat molecular density (Eq where N_{a} is Avogadro's constat molecular mass (g) of the subs volume and size of an atom or metal to the subs volume and size of an atom or metal to the subs volume and size of a tom or metal to the subs volume and size of atom or metal to the subs volume and size of a tom or metal to the subs volume and size of a tom or metal to the subs volume and size of a tom or metal to the subs volume and size of a tom or metal to the subs volume and size of a tom or metal to the subs volume and size of a tom or met$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e- is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic mergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) articles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be stable (Z and N do not change) or unstable (Z or N pontaneously charge). Unstable nuclides are radioactive. Isobar: same mass # (A = N + Z) but different # of neutrons and protons; Examples: 4B, 14C, 14N and 14O Isotome: same neutron number (N) but different number of protons; Examples: 13B, 4C, 15N and 16O Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers transition to other (more stable) nuclear configurations at lifferent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: ⁹⁰ Te is an isomer of ⁹⁰ Te (superscript <i>m</i> stands for netastable); Silver: ^{100m} Mg is an isomer of ¹⁰⁸ Ag Hydrogen (H): The mass of an atom can be estimated by summing the masses of the electrons, rotons and neutrons forming that atom The atomic weight of an atom is the ratio of the atom's mass to 1/12th the mass of a ueutral atom of 12C in its ground state; naturally occurring elements are often a nixture of several isotopes. Atomic weight of an <i>element</i> is the sum of the atomic weight of each isotope times the isotopic in abundance	(c) Ionization Ionization $H \rightarrow {}^{3}H \rightarrow T$ Mass number (A): 3 Atomic number (A): 2 Neutron number (N): 2	$A_{i}p_{i}a = \alpha = _{2}Pre (\alpha \text{ det})$ $Beta = \beta^{-} = _{-1}^{0}e \text{ (emiss)}$ $Positron = \beta^{+} = _{-1}^{0}e \text{ (emiss)}$ $Positron = \beta^{+} = _{-1}^{0}e \text{ (emiss)}$ $Electron Capture = \text{Emission from}$ $Gamma Ray Emission = \gamma = photons (m)$ $Photoelectric Effect = Vacancy in low > Photon interact Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon Effect = Vacancy in low Couloum Barrier = ECB = 1.44 \frac{Z_p Z}{R_p + 1} Size and density a Atom or molecular density (Eq where Na is Avogadro's constat molecular mass (g) of the subs volume and size of an atom or Effective diameter of atom or m = \left(-\frac{1}{2} \right)^{1/3} \left(-\frac{A}{2} \right)^{1/3}$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z ind A remain the same; atom becomes positively charged (because e - is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic intergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) articles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be stable (Z and N do not change) or unstable (Z or N pontaneously charge). Unstable nuclides are radioactive. Isobar: same mass # (A = N + Z) but different # of neutrons and protons; Examples: 14B, 14C, 14N and 14O Isoomers (same N and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers transition to other (more stable) nuclear configurations at lifferent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: ⁹⁰ me is an isomer of ⁹⁰ Te (superscript <i>m</i> stands for neutastable); Silver: ^{100m} Ag is an isomer of ¹⁰⁸ Ag Hydrogen (H): ¹ (also called traitime, 7) The mass of an atom can be estimated by summing the masses of the electrons, rotons and neutrons forming that atom The <i>atomic weight</i> of an atom is the ratio of the atom's mass to 1/12th the mass of a eleutral atom of 12C in its ground state; naturally occurring elements are often a nixture of several isotope: these the <i>isotopic abundance</i> A = $\sum_{i=1}^{i} (\gamma_i / 1)^{i} $	(c) For the second sec	$A_{i}p_{i}a = a = \frac{1}{2}Pe(a \text{ det})$ $Beta = \beta^{-} = \frac{1}{2}Pe(e \text{ miss})$ $Positron = \beta^{+} = \frac{1}{2}Pe(e \text{ miss})$ $Positron = \beta^{+} = \frac{1}{2}Pe(e \text{ miss})$ $Electron Capture = \text{Emission from}$ $Gamma Ray Emission = \gamma = photons (m)$ $Photoelectric Effect = Vacancy in low > Photon interact Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon Pair Pair Pair Pair Pair Pair Pair Pair $
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z ind A remain the same; atom becomes positively charged (because e - is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic inergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) articles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be <i>stable</i> (Z and N do not change) or <i>unstable</i> (Z or N pontaneously charge). <i>Unstable nuclides are radioactive</i> . Isobar: same mass # (A = N + Z) but different number of protons; Examples: 13B, 4C, 15N and 16O Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers transition to other (more stable) nuclear configurations at lifferent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: ^{90m} Te is an isomer of ⁹⁰ Te (superscript <i>m</i> stands for netastable); Silver: ^{106m} Ag is an isomer of ¹⁰⁸ Ag Hydrogen (H): ² The mass of an atom can be estimated by summing the masses of the electrons, rotons and neutrons forming that atom The <i>atomic weight</i> of an atom is the ratio of the atom's mass to 1/12th the mass of a eleutral atom of 12C in its ground state; naturally occurring elements are often a nixture of several isotope: such be <i>isotopic abundance</i> Avogadro's constant is the number of atoms in 12 grams of 12C; $Na = 6.02214150 \times 10^{23}$ atoms/mol	(c) Ionization Ionization $H \rightarrow {}^{3}H \rightarrow T$ Mass number (<i>A</i>): 3 Atomic number (<i>X</i>): 1 Neutron number (<i>N</i>): 2 (00) A_i isotopic abundance	$A pha = \alpha = _{2} rre (\alpha det)$ $Beta = \beta^{-} = _{-1}^{0} e \text{ (emiss)}$ $Positron = \beta^{+} = _{-1}^{0} e \text{ (emiss)}$ $Electron Capture = \text{Emission from}$ $Gamma Ray Emission = \gamma = photons (n)$ $Photoelectric Effect = \text{Vacancy in low}$ $\triangleright \text{ Photon interact}$ $Compton Effect = \text{Vacancy in low}$ $\vdash \text{Incident photon}$ $Pair Production = \text{Incident photon}$ $Pair Production = \text{Incident photon}$ $Pair Production = \text{Incident photon}$ $E_{\gamma} \ge 1.022 \text{ Me}^{\gamma}$ $Couloum Barrier = \text{E}_{\text{CB}} = 1.44 \frac{Z_{\gamma}Z}{R_{\gamma} + 1}$ $Size and density (Eq)$ where N_a is Avogadro's constate molecular density (Eq) where N_a is Avogadro's constate molecular mass (g) of the substate volume and size of an atom or method is a state of a data or meth
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z ind A remain the same; atom becomes positively charged (because e - is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic inergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) articles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be <i>stable</i> (Z and N do not change) or <i>unstable</i> (Z or N pontaneously charge). <i>Unstable nuclides are radioactive</i> . Isobar: same mass # (A = N + Z) but different # of neutrons and protons; Examples: 13B, 14C, 15N and 14O Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers transition to other (more stable) nuclear configurations at lifferent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: ⁹⁰ / _T Te is an isomer of ⁹⁰ / _T e (superscript <i>m</i> stands for netastable); Silver: ^{106/m} ag is an isomer of ¹⁰⁸ Ag Hydrogen (H): ² / ₁ (also called triatiom, 7) The mass of an atom can be estimated by summing the masses to 1/12th the mass of a neutrons, forming that atom The <i>atomic weight</i> of an atom is the ratio of the atom's mass to 1/12th the mass of a leutral atom of 12C in its ground state; naturally occurring elements are often a nixture of several isotope: times the <i>isotopic abundance</i> Avogadro's constant is the number of atoms in 12 grams of 12C; $Na = 6.02214150 \times 10^{23}$ atoms/mol	(c) Ionization Ionization $H \rightarrow {}^{3}H \rightarrow T$ Mass number (<i>A</i>): 3 Atomic number (<i>X</i>): 1 Neutron number (<i>N</i>): 2 00) <i>A_i</i> isotopic abundance omic weight	$A pha = \alpha = _{2} Pre (\alpha det)$ $Beta = \beta^{-} = _{-1}^{0} e \text{ (emiss)}$ $Positron = \beta^{+} = _{-1}^{0} e \text{ (emiss)}$ $Positron = \beta^{+} = _{-1}^{0} e \text{ (emiss)}$ $Electron Capture = \text{ Emission from}$ $Gamma Ray Emission = \gamma = photons (n)$ $Photoelectric Effect = Vacancy in low > Photon interact Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon Couloum Barrier = ECB=1.44 \frac{Z_{p}Z}{R_{p}+1} Size and density (Eq where N_{a} is Avogadro's constat molecular mass (g) of the subs volume and size of an atom or m d = \left(\frac{1}{N}\right)^{1/3} = \left(\frac{A}{\rho N_{a}}\right)^{1/3} a^{1/3} Size of Nucleus (Set$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z ind A remain the same; atom becomes positively charged (because e - is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic inergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) articles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be <i>stable</i> (Z and N do not change) or <i>unstable</i> (Z or N pontaneously charge). <i>Unstable nuclides are radioactive</i> . Isobar: same mass # (A = N + Z) but different # of neutrons and protons; Examples: 13B, 14C, 15N and 16O Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers transition to other (more stable) nuclear configurations at lifferent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: ^{90m} Te is an isomer of ⁹⁰ Te (superscript <i>m</i> stands for netastable); Silver: ^{106m} Ag is an isomer of ¹⁰⁸ Ag Hydrogen (H): ⁷ The mass of an atom can be estimated by summing the masses to 1/12th the mass of a neutrons, forming that atom The <i>atomic mess unit (u)</i> is define so that the mass of one 12C atom is exactly 12 <i>u</i> . The <i>atomic weight</i> of an atom is the ratio of the atom's mass to 1/12th the mass of a leutral atom of 12C in its ground state; naturally occurring elements are often a nixture of several isotopes. Atomic weight of an element is the sum of the atomic veight of each isotope times the <i>isotopic abundance</i> Avogadro's constant is the number of atoms in 12 grams of 12C; $Na = 6.02214150 \times 10$	(c) Ionization Ionization $H \rightarrow {}^{3}H \rightarrow T$ Mass number (<i>A</i>): 3 Atomic number (<i>X</i>): 2 Neutron number (<i>N</i>): 2 00) <i>A_i</i> isotopic abundance omic weight	$Alpha = \alpha = _{2}Pre (\alpha \text{ det})$ $Beta = \beta^{-} = _{-1}^{0}e \text{ (emiss)}$ $Positron = \beta^{+} = _{-1}^{0}e \text{ (emiss)}$ $Positron = \beta^{+} = _{-1}^{0}e \text{ (emiss)}$ $Electron Capture = \text{Emission from}$ $Gamma Ray Emission = \gamma = photons (n)$ $Photoelectric Effect = Vacancy in low > Photon interact Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon Couloum Barrier = ECB=1.44 \frac{Z_{p}Z}{R_{p}+1} Size and density (Eq where N_{a} is Avogadro's constat molecular mass (g) of the subs volume and size of an atom or m d = \left(\frac{1}{N}\right)^{1/3} = \left(\frac{A}{\rho N_{a}}\right)^{1/3} = a^{1/3} Size of Nucleus (Soc$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z ind A remain the same; atom becomes positively charged (because e - is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic inergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) articles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be <i>stable</i> (Z and N do not change) or <i>unstable</i> (Z or N pontaneously charge). <i>Enstable nuclides are radioactive</i> . Isobar: same mass # (A = N + Z) but different # of neutrons and protons; Examples: 13B, 14C, 15N and 16O Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers transition to other (more stable) nuclear configurations at lifterent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: ^{90m} Te is an isomer of ⁹⁰ Te (superscript <i>m</i> stands for neutrastable); Silver: ^{108m} Mg is an isomer of ¹⁰⁸ Ag Hydrogen (H): ² The mass of an atom can be estimated by summing the masses to 1/12th the mass of a eutral atom of 12C in its ground state; naturally occurring elements are often a nixture of several isotope: Atomic weight of an atom is the ratio of the atom's mass to 1/12th the mass of a leutral atom of 12C in its ground state; naturally occurring is the sum of the atomic veight of each isotope times the <i>isotopic abundance</i> Are elements in 12 grams of 12C; $Na = 6.02214150 \times 10^{23}$ atoms/mol Atom densities (atoms cm ³) on order of 100 ²¹ cm ³ to 10 ²³ cm ³ \downarrow χ is the e% for solids an	(c) For the second sec	$Alpha = \alpha = \frac{1}{2}re (\alpha \text{ des})$ $Beta = \beta^{-} = \frac{1}{2}e \text{ (emiss)}$ $Positron = \beta^{+} = \frac{1}{2}e \text{ (emiss)}$ $Electron Capture = \text{ Emission from}$ $Gamma Ray Emission = \gamma = photons (n)$ $Photoelectric Effect = Vacancy in low > Photon interact Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon Pair Pair Pair Pair Pair Pair Pair Pair $
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z ind A remain the same; atom becomes positively charged (because e - is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic inergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) articles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be <i>stable</i> (Z and N do not change) or <i>unstable</i> (Z or N pontaneously charge). <i>Unstable nuclides are radioactive</i> . Isobar: same mass # (A = N + Z) but different # of neutrons and protons; Examples: 13B, 14C, 15N and 16O Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers transition to other (more stable) nuclear configurations at lifferent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: ⁹⁰ / _T Te is an isomer of ⁹⁰ / _T e (superscript <i>m</i> stands for neutrastable); Silver: ^{106/Mag} is an isomer of ¹⁰⁸ Ag Hydrogen (H): ¹ / ₁ (also called <i>triatum</i> , 7) The <i>mass of</i> an atom can be estimated by summing the masses to 1/12th the mass of a eutral atom of 12C in its ground state; naturally occurring elements are often a nixture of several isotopes. Atomic weight of an atom is the ratio of the atom's mass to 1/2th the mass of a leutral atom of 12C in its ground state; naturally occurring elements are often a nixture of several isotopes. Atomic weight of an element is the sum of the atomic veight of each isotope times the <i>isotopic abundance</i> Areaged atoms, ¹ / ₁ is the number of onor of 10 ²⁰	(c) Ionization Ionization $H \rightarrow {}^{3}H \rightarrow T$ Mass number (<i>A</i>): 3 Atomic number (<i>X</i>): 2 Neutron number (<i>N</i>): 2 00) <i>A_i</i> isotopic abundance omic weight	$Alpha = \alpha = \frac{1}{2}re(\alpha \text{ det})$ $Beta = \beta^{-} = \frac{1}{2}e(\text{ emiss})$ $Positron = \beta^{+} = \frac{1}{2}e(\text{emiss})$ $Electron Capture = \text{Emission from}$ $Gamma Ray Emission = \gamma = photons (\text{m})$ $Photoelectric Effect = Vacancy in low > Photon interact Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon Couloum Barrier = ECB=1.44 \frac{Z_p Z}{R_p + 1} Size and density (Eq where N_a is Avogadro's constat molecular mass (g) of the subs volume and size of an atom or m d = \left(\frac{1}{N}\right)^{1/3} = \left(\frac{A}{\rho N_a}\right)^{1/3} =$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z ind A remain the same; atom becomes positively charged (because e - is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic inergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (⁴ He ²⁺) articles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be stable (Z and N do not change) or unstable (Z or N pontaneously change). Unstable nuclides are radioactive. Isobar: same mass # (A = N + Z) but different # of neutrons and protons; Examples: 13B, 14C, 15N and 14O Isoomers (same A and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers transition to other (more stable) nuclear configurations at lifterent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: ^{90m} Te is an isomer of ⁹⁰ Te (superscript <i>m</i> stands for neutrastable); Silver: ^{100m} Ag is an isomer of ¹⁰⁸ Ag Hydrogen (H): ² / ₁ (also called triatm.) ⁷ / ₁). The mass of an atom can be estimated by summing the masses to 1/12th the mass of a eutertal atom of 12C in its ground state; naturally occurring elements are often a nixture of several isotope: Atomic weight of an atom is the ratio of the atom's mass to 1/12th the mass of a leutral atom of 12C in its ground state; naturally occurring is the sum of the atomic veight of each isotope times the <i>isotopic abundance</i> Arogadro's constant is the number of atoms in 12 grams of 12C; $Na = 6.02214150 \times 10^{23}$ atoms/mol Atom densities (atoms cm ³) on order of	(c) For the second sec	$Aipha = a = \frac{1}{2}re(a deta)$ $Beta = \beta^{-} = \frac{1}{2}e(emiss)$ $Positron = \beta^{+} = \frac{1}{2}e(emiss)$ $Positron = \beta^{+} = \frac{1}{2}e(emiss)$ $Electron Capture = Emission from$ $Gamma Ray Emission = \gamma = photons (m)$ $Photoelectric Effect = Vacancy in low > Photon interact Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon Effect = Vacancy in low > Eg ≥ 1.022 Me1 Couloum Barrier = ECB=1.44 \frac{Z_p Z}{R_p + 1} Size and density (Eq where Na is Avogadro's constat molecular mass (g) of the subs volume and size of an atom or m d = \left(\frac{1}{N}\right)^{1/3} = \left(\frac{A}{\rho N_a}\right)^{1/3} a^{1} Size of Nucleus (Se • The size of nucleus cam where R0 ≈ 1.25 × 10-13 R$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number Electron N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z ind A remain the same; atom becomes positively charged (because e - is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic inergy to ionize matter. Electrons, positrons, neutrons, protons, alpha ("He ²⁺) articles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide</i> . Can either be <i>stable</i> (Z and N do not change) or <i>unstable</i> (Z or N pontaneously change). Unstable nuclides are radioactive. Isobar: same mass # (A = N + Z) but different number of protons; Examples: 13B, 14C, 15N and 16O Isomers (same N and Z): Nuclides can sometimes exist in different long-lived xxcited states. Isomers transition to other (more stable) nuclear configurations at lifterent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: ⁹⁰ / _T Te is an isomer of ⁹⁰ Te (superscript <i>m</i> stands for neutrastable); Silver: ^{106/m} g is an isomer of ¹⁰⁸ Ag Hydrogen (H): ² / ₁ (also called <i>triatum</i> , 7) The mass of an atom can be estimated by summing the masses to 1/12th the mass of a eutertal atom of 12C in its ground state; naturally occurring elements are often a nixture of several isotopes. Atomic weight of an atom is the ratio of the atom's mass to 1/12th the mass of a leutral atom of 12C in its ground state; naturally occurring elements are often a nixture of several isotopes. Atomic weight of an element is the sum of the atomic weight of each isotope times the <i>isotopic abundance</i> Areaged atoms, ¹ / ₁ is the number of onor of 10 ² in its pround	(c) Ionization Ionization $H \rightarrow {}^{3}H \rightarrow T$ Mass number (<i>A</i>): 3 Atomic number (<i>A</i>): 3 Atomic number (<i>N</i>): 2 00) <i>A_i</i> isotopic abundance omic weight $I_{2}O$	$Aipha = a = \frac{1}{2}re(a det)$ $Beta = \beta^{-} = \frac{1}{2}e(emiss)$ $Positron = \beta^{+} = \frac{1}{2}e(emiss)$ $Positron = \beta^{+} = \frac{1}{2}e(emiss)$ $Electron Capture = Emission from$ $Gamma Ray Emission = \gamma = photons (m)$ $Photoelectric Effect = Vacancy in low > Photon interact Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon Effect = Vacancy in low > Eg ≥ 1.022 Me1 Couloum Barrier = ECB=1.44 \frac{Z_{p}Z}{R_{p}+1} Size and density (Eq where Na is Avogadro's constat molecular mass (g) of the subs volume and size of an atom or m d = \left(\frac{1}{N}\right)^{1/3} = \left(\frac{A}{\rho N_{a}}\right)^{1/3} a^{1} Size of Nucleus (Se • The size of nucleus cam where R0 ≈ 1.25 × 10-13 R$
Atom uniquely identified by # of neutrons (N) and # of protons (Z) in the nucleus Z = atomic numberN = neutron numberA = (N + Z) = mass number N/Z Ratios: As Z increases, N/Z increases (more neutrons needed to bind nucleus) Ionization: process whereby one or more electrons are liberated from an atom; Z and A remain the same; atom becomes positively charged (because e - is removed) Ionizing Radiation: (1) Atomic or sub-atomic particles with sufficient kinetic nergy to ionize matter. Electrons, positrons, neutrons, protons, alpha (^{Hge+1}) articles; (2) Very energetic photons (electromagnetic radiation); x-rays and γ -rays Elements: All atoms of same element have same Z, but may have different A. Isotope (or nuclide): Atom with specific # of protons and neutrons is termed a <i>nuclide.</i> Can either be stable (Z and N do not change) or unstable (Z or N pontaneously change). Unstable nuclides are radioactive. Isobar: same mass # (A = N + Z) but different number of protons; Examples: 13B , 14C, 14N and 14O Isotome: same neutron number (N) but different number of protons; Examples: 13B, 4C, 15N and 16O Isomers (same N and Z) : Nuclides can sometimes exist in different long-lived xcited states. Isomers transition to other (more stable) nuclear configurations at lifferent rates (half-lives). They also emit different quantities and types of ionizing adiation. Examples: Tellurium: ^{90m} Te is an isomer of ⁹⁰ Te (superscript <i>m</i> stands for netastable), Silver: ^{108m} Ag is an isomer of ¹⁰⁸ Ag Hydrogen (H): ⁷ The mass of an atom can be estimated by summing the masses to 1/12th the mass of a neutral atom of 12C in its ground state; naturally occurring elements are often a nixture of several isotope: times the isotopic abundance Avogadro's constant is the number of atoms in 12 grams of 12C; Na = 6.02214150 x 10 ²³ atoms/mol Atom densities (atoms cm ³) on order of 10²¹ cm³ to 10²³ cm³ > γi is the 9% for solids and liquids; 1000 k lower for gases. A i	(c) Ionization Ionization $H \rightarrow {}^{3}H \rightarrow T$ Mass number (<i>A</i>): 3 Atomic number (<i>A</i>): 3 Atomic number (<i>N</i>): 2 00) <i>A_i</i> isotopic abundance omic weight $I_{2}O$ $\underline{M}_{2}O$ $\underline{M}_{2}O$	$Alpha = \alpha = \frac{1}{2}rPe(\alpha \text{ det})$ $Beta = \beta^{-} = \frac{1}{2}e(\text{emiss})$ $Positron = \beta^{+} = \frac{1}{2}e(\text{emiss})$ $Positron = \beta^{+} = \frac{1}{2}e(\text{emiss})$ $Electron Capture = \text{Emission from}$ $Gamma Ray Emission = \gamma = photons (\text{m})$ $Photoelectric Effect = Vacancy in low > Photon interact Compton Effect = Vacancy in low > Incident photon Pair Production = Incident photon Effect = Vacancy in low > E_{\gamma} \ge 1.022 \text{ Me}^{1} Couloum Barrier = ECB=1.44 \frac{Z_{p}Z}{R_{p}+1} Size and density (Eq where N_{a} is Avogadro's constat molecular mass (g) of the subs volume and size of an atom or m d = \left(\frac{1}{N}\right)^{1/3} = \left(\frac{A}{\rho N_{a}}\right)^{1/3} a^{1} Size of Nucleus (Se • The size of nucleus cam where R_{0} \cong 1.25 \times 10^{-13}$

Quantity	Symbol	Value	Unit	Relative std. uncert. ur		
C						
speed of light in vacuum	6.65	299 792 458	m s-1	(exact)		
magnetic constant	-,-0 Ilo	$4\pi \times 10^{-7}$	NA^{-2}	()		
	10	$= 12.566370614 \times 10^{-7}$	$N A^{-2}$	(exact)		
electric constant $1/\mu_0 c^2$	60	$8.854187817 \times 10^{-12}$	$F m^{-1}$	(exact)		
Newtonian constant				· · · · · ·		
of gravitation	G	$6.6742(10) \times 10^{-11}$	$m^{3} kg^{-1} s^{-2}$	$1.5 imes 10^{-4}$		
2			2			
Planck constant	h	$6.6260693(11) \times 10^{-34}$	Js	$1.7 imes 10^{-7}$		
$h/2\pi$	ħ	$1.05457168(18) \times 10^{-34}$	Js	1.7×10^{-7}		
elementary charge	e	$1.60217653(14) \times 10^{-19}$	с	8.5×10^{-8}		
magnetic flux quantum $h/2e$	Φ_0	$2.06783372(18) \times 10^{-15}$	Wb	8.5×10^{-8}		
conductance quantum $2e^2/h$	G_0	$7.748091733(26) \times 10^{-5}$	S	3.3×10^{-9}		
- ,						
electron mass	m_{e}	$9.1093826(16) \times 10^{-31}$	kg	1.7×10^{-7}		
proton mass	m_{p}	$1.67262171(29) \times 10^{-27}$	kg	1.7×10^{-7}		
proton-electron mass ratio	m_p/m_e	1836.15267261(85)		4.6×10^{-10}		
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α΄	$7.297352568(24) \times 10^{-3}$		3.3×10^{-9}		
inverse fine-structure constant	α^{-1}	137.03599911(46)		$3.3 imes 10^{-9}$		
Rydberg constant $\alpha^2 m_c/2h$	R	10973731.568525(73)	m^{-1}	6.6×10^{-12}		
Avogadro constant	N.L	$6.0221415(10) \times 10^{23}$	mol^{-1}	1.7×10^{-7}		
Faraday constant N, e	F	96 485,3383(83)	C mol ⁻¹	8.6×10^{-8}		
molar gas constant	R	8.314472(15)	$J \text{ mol}^{-1} \text{ K}^{-1}$	1.7×10^{-6}		
Boltzmann constant R/N.	k	$1.3806505(24) \times 10^{-23}$	JK ⁻¹	1.8×10^{-6}		
Stefan-Boltzmann constant						
$(\pi^2/60)k^4/b^3c^2$	σ	$5.670400(40) \times 10^{-8}$	$W m^{-2} K^{-4}$	7.0×10^{-6}		
(a. 100), a pro e		control for una mide the ST				
rion-51 units accepted for use with the SI						
electron volt: (e/C) J	eV	$1.60217653(14) \times 10^{-19}$	J	$8.5 imes 10^{-8}$		
(unified) atomic mass unit						
$1 u = m_u = \frac{1}{12}m(^{12}C)$	u	$1.66053886(28) \times 10^{-27}$	kg	$1.7 imes 10^{-7}$		
$= 10^{-3} \text{ kg mol}^{-1}/N_{A}$		(2-)				
5 /···						

 $= 1.6 \times 10^{-19}$ J = 1 eV (e⁻ accelerated thru 1 V)

 $Bq = 1 Ci (1 g of {}^{226}Ra); 1 Bq = 1 dps$

262158 x 10⁻²⁷kg = 938.271998 MeV

92716 x 10⁻²⁷kg = 939.565330 MeV

938188 x 10⁻³¹ kg = 0.510998902 MeV

s x 10⁻²⁷ kg = 931.494013 MeV

exay from low n-to-p ratio; ${}^{A}_{Z}X \rightarrow {}^{A-4}_{Z-2}Y+\alpha$)

sion from high n-to-p ratio; $n \rightarrow p + \beta^- + \overline{v_e}$)

ositron =
$$\beta^+ = \int_{-1}^{0} e$$
 (emission from low n-to-p ratio if α not possible)

low n-to-p ratio if α and β^+ not possible

uclei in excited state after transformation; ${}^{A}_{Z}X^{*} \rightarrow {}^{A}_{Z}X^{+}\gamma)$

wer shell -> characteristic x-rays/auger electrons emitted

ts with entire atom \rightarrow ejects photoelectron from K shell; $E_e = E_{\gamma} - E_{binding}$

wer shell \rightarrow characteristic x-rays/auger electrons emitted

n scatters off atomic electron; altered wavelength

in completely absorbed; replaced with β^+ : β^- V; $E_e = E_p = (E_\gamma - 1.022)/2$

 $\frac{Z_{\rm T}}{R_{\rm T}} MeV, R = 1.4A^{1/3}$

are related

I. 1.4): $N = \frac{\rho}{A} N_a$ Atom or molecules cm⁻³

ant, ρ is density (g cm⁻³) and A is the atomic or stance. For solids and liquids, the effective r molecule is $\frac{1}{N} = \frac{1}{\frac{\rho}{A_{a}}} = \frac{A}{\rho N_{a}}$ cm² per atom nolecule $\frac{1}{N} = \frac{1}{\frac{\rho}{A_{a}}} = \frac{A}{\rho N_{a}}$ or molecule N

$$d = \left(\frac{1}{N}\right)^{1/3} = \left(\frac{A}{\rho N_a}\right)^{1/3} \text{Electron unlikely to be found further away from nucleus than } \frac{d}{d}$$

ection 1.2.8)

be approximated by a sphere of radius cm and A is atomic weight

$$R = R_0 A^{1/3}$$

 $1\frac{g}{cm^{3}} \cdot \frac{H_{2}O}{2.989 \times 10^{-23}g} = 3.35 \times 10^{22} \frac{H_{2}O}{cm^{3}}$

Chart of the nuclides

• UV radiation (**photon energy**): What is the kinetic energy of UV radiation with a wavelength of 290 nm? $v = \frac{c}{\lambda} = \frac{3 \times 10^8 \text{ m/s}}{290 \text{ nm}} \cdot \frac{10^9 \text{ nm}}{\text{m}} = 1.0345 \times 10^{15} \text{ s}^{-1} = 1.0345 \times 10^{15} \text{ Hz}$ $E = h \cdot v = 6.626 \times 10^{-34} \text{ J-s} \cdot (1.0345 \times 10^{15} \text{ Hz}) \cdot \frac{1 \text{ s}^{-1}}{1 \text{ Hz}} \cdot \frac{\text{eV}}{1.6022 \times 10^{-19} \text{ J}}$

= 4.278 eV

For comparison, 3.89 eV (Cs) to 24.59 eV (He) is the minimum amount of energy required to liberate a bound electron (i.e., produce ionization) UV radiation with a wavelength shorter than about 124 nm (E = 10 eV) is often considered ionizing.

Kinetic energy as a function of speed

Uncertainty

Uncertainty in the location of an electron

 $p = mv = 9.1 \times 10^{-31} \text{ kg} \times 300 \text{ m/s} = 2.7 \times 10^{-28} \text{ kg m/s}$ $\Delta p = m\Delta v = (0.01\%) \cdot 2.7 \times 10^{-28}$ kg m/s $= 2.7 \times 10^{-32}$ kg m/s $\Delta x \ge \frac{h}{2\pi\Delta p} = \frac{6.626 \times 10^{-34} \text{ J-s}}{2\pi \cdot 2.7 \times 10^{-32} \text{ kg m/s}}$ =0.00390 m (= 0.39 cm)Conclusion: Location of e is highly uncertain

Why are atom's so big?

