MU calculations

What do the graphs below show?

- What is the trend with field size and why?
- How do you measure Sc? Sp?
- How do you use Sc and Sp?
- How does Sc change for FFF fields?

- Collimator scatter
 - $S_c(r_c) = \frac{output_{air}(r_c)}{output_{air}(r_0)}$
 - Dominated by FF
 - $\triangle S_c$ with $\triangle Field$ size
 - More scatter
 - Less backscatter to MU chamber
 - r_c = collimator field size, defined at iso
 - Collimator exchange effect (<2%)
 - Phantom scatter

•
$$S_p(r_d) = \frac{S_{cp}(r_d)}{S_c(r_d)} = \frac{BSF(r_d)}{BSF(r_0)}$$

- ΥS_p with Υ Field size
- r_d = blocked field size at calculation depth (SAD) or at normalization depth (SSD)
 - May be < r_c with flash or tertiary blocking
 - May be > r_c with extended SSD
 - Must scale r if calculation depth not at r₀

What kind of treatment is shown in the image?

- What information would you need to calculate the MU?
- What MU would you expect for 2 Gy/fraction?
- How would the MU change if:
 - The patient's head became thicker?
 - If you were treating at 110 cm SSD?

