

• What are the components of CT simulator

- CT scanner consists of a diagnostic quality CT scanner, laser patient positioning marking system, virtual simulation, 3D treatment planning software and different hardcopy output devices
- The CT scanner is used to acquire a volumetric CT scan of a patient which represents the virtual patient for planning

CT simulation process

1. CT-scan, patient positioning and immobilization

- Scanner acquires volumetric scan of a patient, which represents a virtual or digital patient
- Scan is acquired with
 - the patient immobilized in treatment position
 - treatment specific scan protocols
 - often increased scan limits
 - use of contrast
 - placement of localization marks on the patient skin

2. Treatment planning and CT-simulation

Beam placement and treatment design is performed using virtual simulation software

- Contouring of target and OAR using information obtained from different imaging modalities
- Treatment isocenter placement
 - » can be a final isocenter marked (needs physician presence)
 - » a reference point marked (does not need physician's presence)
 - » localization marks are placed on the patient's skin
- Placement of the beams, design of treatment portals and communication of information to TPS
- Printing of DRRs and patient setup instruction

3. Treatment setup

Patient is setup on the treatment machine according to instructions created from the CT-sim software Port films are acquired and compared with CT-sim DRRs • Compare multi-slice scanner and single slice scanner

Single-Slice

Multi-Slice

• Compare multi-slice scanner and single slice scanner

Multislice scanners

Projection data from multiple slice is acquired simultaneously
Uses multiple row of detectors in the z axis
Enables acquisition of imaging studies faster than single slice

Multi-slice CT

scanners

- Wider collimator width
- Post patient collimation
- Slice thickness 0.75mm
- Rotation time 0.5s

single-slice CT

- Slice thickness 3 mm
- Rotation time 1s

Goldman, Lee W. "Principles of CT: multislice CT." *Journal of nuclear medicine technology* 36.2 (2008): 57-68.

What is this artifact?

The Cone-Angle Problem in Multi-slice CT

The measurement rays are tilted by the so called cone-angle with respect to the center plane. The cone-angle is largest for the slices at the outer edges of the detector and it increases with an increasing number of detector rows if their width is kept constant. As a first approximation, the cone-angle is neglected in multi-slice CT reconstruction approaches. Then, the measurement rays are treated as if they travel perpendicular to the z-axis, and modified two dimensional image-reconstruction algorithms are used. The data, however, are then inconsistent, and cone-beam artifacts will be produced

- What are these images?
- What is the difference between them

5mm Slices

3mm

0.8mm

CT sim QA --- AAPM TG 66

(1)Radiation safety and patient safety test (including CT dosimetry)

(2) Electromechanical components(3) Image quality

TABLE I. Test specifications for radiation and patient safety.

Performance parameter	Test objective	Frequency	Tolerance limits
Shielding survey	To verify exposure levels around the CT-scanner room	Initially	NCRP recommendations or applicable regulatory limits
Patient dose from CT-scan, CTDI	To verify safe dose delivered from the scanner	Annually or after major CT-scanner component replacement	\pm 20% of manufacturer specifications

TABLE III. Test specifications for image performance ev-	valuation.	ľ
--	------------	---

Performance parameter	Frequency	Tolerance limits
CT number accuracy	Daily—CT number for water Monthly—4 to 5 different materials Annually—Electron density phantom	For water, 0±5 HU
Image noise	Daily	Manufacturer specifications
In plane spatial integrity	Daily— x or y direction Monthly—both directions	±1 mm
Field uniformity	Monthly—most commonly used kVp Annually—other used kVp settings	within ±5 HU
Electron density to CT number	Annually—or after scanner calibration	Consistent with commissioning results

TABLE II. Test specifications for electromechanical components.^a

Performance parameter	Test objective	Frequency	Tolerance limits
Alignment of gantry lasers with the center of imaging plane	To verify proper identification of scan plane with gantry lasers	Daily	±2 mm
Orientation of gantry lasers with respect to the imaging plane	To verify that the gantry lasers are parallel and orthogonal with the imaging plane over the full length of laser projection	Monthly and after laser adjustments	±2 mm over the length of laser projection
Spacing of lateral wall lasers with respect to lateral gantry lasers and scan plane	To verify that lateral wall lasers are accurately spaced from the scan plane. This distance is used for patient localization marking	Monthly and after laser adjustments	±2 mm
Orientation of wall lasers with respect to the imaging plane	To verify that the wall lasers are parallel and orthogonal with the imaging plane over the full length of laser projection	Monthly and after laser adjustments	±2 mm over the length of laser projection
Orientation of the ceiling laser with respect to the imaging plane	To verify that the ceiling laser is orthogonal with the imaging plane	Monthly and after laser adjustments	±2 mm over the length of laser projection
Orientation of the CT-scanner tabletop with respect to the imaging plane	To verify that the CT-scanner tabletop is level and orthogonal with the imaging plane	Monthly or when daily laser QA tests reveal rotational problems	± 2 mm over the length and width of the tabletop
Table vertical and longitudinal motion	To verify that the table longitudinal motion according to digital indicators is accurate and reproducible	Monthly	± 1 mm over the range of table motion
Table indexing and position	To verify table indexing and position accuracy under scanner	Annually	± 1 mm over the scan range

• What are the advantages and disadvantages of MRI simulator

Advantages

- Soft tissue contrast
- Multiple contrast (T1, T2,...)
- Functional imaging
- Any slice orientation

disadvantages

- No electron density information
- Image distortion
- Bone not clear
- DRR

MRI simulator VS. MRI scanner

Wide bore MRI Scanner Flat table top, immobilization devices and compatible RF coils Movable lasers Simulation workstation RT-sim MRI protocols QA Integration in RT workflow